Reaction participants Show >> << Hide
- Name help_outline 1-hexadecanoyl-2-nonadioyl-sn-glycero-3-phosphocholine Identifier CHEBI:78207 Charge -1 Formula C33H63NO10P InChIKeyhelp_outline GHQQYDSARXURNG-SSEXGKCCSA-M SMILEShelp_outline CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 2-nonadioyl-sn-glycero-3-phosphocholine Identifier CHEBI:145780 Charge -1 Formula C17H33NO9P InChIKeyhelp_outline WVKDDHFUHISZRK-OAHLLOKOSA-M SMILEShelp_outline [O-]C(CCCCCCCC(=O)O[C@@H](COP(=O)(OCC[N+](C)(C)C)[O-])CO)=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline hexadecanoate Identifier CHEBI:7896 (CAS: 143-20-4) help_outline Charge -1 Formula C16H31O2 InChIKeyhelp_outline IPCSVZSSVZVIGE-UHFFFAOYSA-M SMILEShelp_outline CCCCCCCCCCCCCCCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 92 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:62464 | RHEA:62465 | RHEA:62466 | RHEA:62467 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Preferential hydrolysis of truncated oxidized glycerophospholipids by lysosomal phospholipase A2.
Abe A., Hiraoka M., Ohguro H., Tesmer J.J., Shayman J.A.
Truncated oxidized glycerophospholipids (ox-PLs) are bioactive lipids resulting from oxidative stress. The catabolic pathways for truncated ox-PLs are not fully understood. Lysosomal phospholipase A2 (LPLA2) with phospholipase A and transacylase activities is a key enzyme in phospholipid homeostas ... >> More
Truncated oxidized glycerophospholipids (ox-PLs) are bioactive lipids resulting from oxidative stress. The catabolic pathways for truncated ox-PLs are not fully understood. Lysosomal phospholipase A2 (LPLA2) with phospholipase A and transacylase activities is a key enzyme in phospholipid homeostasis. The present study assessed whether LPLA2 could hydrolyze truncated ox-PLs. Incubation of LPLA2 with liposomes consisting of 1,2-O-octadecenyl-sn-glycero-3-phosphocholine (DODPC)/1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) or truncated oxidized phosphatidylcholine (ox-PC)/N-acetylsphingosine (NAS) under acidic conditions resulted in the preferential deacylation at the sn-1 position of the truncated ox-PCs. Additionally, the release of free fatty acid from the truncated ox-PCs preferentially occurred compared with the NAS-acylation. Incubation of LPLA2 with the liposomes consisting of DODPC/DOPC/truncated ox-PC/NAS resulted in the same preferential fatty acid release from the truncated ox-PC. The cationic amphiphilic drug, amiodarone, did not inhibit such fatty acid release, indicating that truncated ox-PCs partition from the lipid membrane into the aqueous phase and react with free LPLA2. Consistent with this mechanism, the hydrolysis of some truncated ox-PCs, but not DOPC, by LPLA2 was detected at neutral pH. Additionally, LPLA2-overexpressed Chinese hamster ovary cells efficiently catabolized truncated ox-PC and were protected from growth inhibition. These findings support the existence of a novel catabolic pathway for truncated ox-PLs via LPLA2. << Less
J. Lipid Res. 58:339-349(2017) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.