Reaction participants Show >> << Hide
- Name help_outline a 1,2-diacyl-sn-glycero-3-phosphocholine Identifier CHEBI:57643 Charge 0 Formula C10H18NO8PR2 SMILEShelp_outline [C@](COC(=O)*)(OC(=O)*)([H])COP(OCC[N+](C)(C)C)([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 324 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a 2-acyl-sn-glycero-3-phosphocholine Identifier CHEBI:57875 Charge 0 Formula C9H19NO7PR SMILEShelp_outline C[N+](C)(C)CCOP([O-])(=O)OC[C@@H](CO)OC([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 99 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a fatty acid Identifier CHEBI:28868 Charge -1 Formula CO2R SMILEShelp_outline [O-]C([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,526 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:18689 | RHEA:18690 | RHEA:18691 | RHEA:18692 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Related reactions help_outline
Specific form(s) of this reaction
- RHEA:74249
- RHEA:62490
- RHEA:62486
- RHEA:62482
- RHEA:62466
- RHEA:56450
- RHEA:53498
- RHEA:40489
- RHEA:38789
- RHEA:38785
More general form(s) of this reaction
Publications
-
Triacylglycerol lipase, monoacylglycerol lipase and phospholipase activities of highly purified rat hepatic lipase.
Jensen G.L., Daggy B., Bensadoun A.
Highly purified rat hepatic lipase (NaCl-resistant, alkaline pH optimum) was studied to evaluate whether the enzyme has triacylglycerol lipase, monoacylglycerol lipase and phospholipase activities. Enzyme exhibiting a single band by SDS-polyacrylamide gel electrophoresis and having a specific acti ... >> More
Highly purified rat hepatic lipase (NaCl-resistant, alkaline pH optimum) was studied to evaluate whether the enzyme has triacylglycerol lipase, monoacylglycerol lipase and phospholipase activities. Enzyme exhibiting a single band by SDS-polyacrylamide gel electrophoresis and having a specific activity eight times greater than that in any previous report was utilized. The ratios of the different lipolytic activities to each other remained constant throughout a multistep hepatic lipase purification. The lipolytic activities coeluted by gel filtration on Ultrogel AcA 34. Column isoelectric focusing of the highly purified enzyme revealed comigration of the lipolytic activities. Thermal inactivation produced similar decay curves for the different activities. Immune titration curves for the different activities with specific antibody against hepatic lipase were essentially identical. These findings indicate that hepatic lipase is a single enzyme molecule which has triacyglycerol lipase, monoacylglycerol lipase and phospholipase activities with artificial substrates. To study these lipolytic activities further, purified hepatic lipase was subjected to limited digestion by specific proteases. The triacylglycerol lipase activity was more sensitive to proteolytic destruction than either of the other two activities. << Less
Biochim. Biophys. Acta 710:464-470(1982) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Enzymological analysis of the tumor suppressor A-C1 reveals a novel group of phospholipid-metabolizing enzymes.
Shinohara N., Uyama T., Jin X.H., Tsuboi K., Tonai T., Houchi H., Ueda N.
A-C1 protein is the product of a tumor suppressor gene negatively regulating the oncogene Ras and belongs to the HRASLS (HRAS-like suppressor) subfamily. We recently found that four members of this subfamily expressed in human tissues function as phospholipid-metabolizing enzymes. Here we examined ... >> More
A-C1 protein is the product of a tumor suppressor gene negatively regulating the oncogene Ras and belongs to the HRASLS (HRAS-like suppressor) subfamily. We recently found that four members of this subfamily expressed in human tissues function as phospholipid-metabolizing enzymes. Here we examined a possible enzyme activity of A-C1. The homogenates of COS-7 cells overexpressing recombinant A-C1s from human, mouse, and rat showed a phospholipase A½ (PLA½) activity toward phosphatidylcholine (PC). This finding was confirmed with the purified A-C1. The activity was Ca²⁺ independent, and dithiothreitol and Nonidet P-40 were indispensable for full activity. Phosphatidylethanolamine (PE) was also a substrate and the phospholipase A₁ (PLA₁) activity was dominant over the PLA₂ activity. Furthermore, the protein exhibited acyltransferase activities transferring an acyl group of PCs to the amino group of PEs and the hydroxyl group of lyso PCs. As for tissue distribution in human, mouse, and rat, A-C1 mRNA was abundantly expressed in testis, skeletal muscle, brain, and heart. These results demonstrate that A-C1 is a novel phospholipid-metabolizing enzyme. Moreover, the fact that all five members of the HRASLS subfamily, including A-C1, show similar catalytic properties strongly suggests that these proteins constitute a new class of enzymes showing PLA½ and acyltransferase activities. << Less
J. Lipid Res. 52:1927-1935(2011) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.
-
Triacylglycerol and phospholipid hydrolysis in human plasma lipoproteins: role of lipoprotein and hepatic lipase.
Deckelbaum R.J., Ramakrishnan R., Eisenberg S., Olivecrona T., Bengtsson-Olivecrona G.
To explore the interactions of triacylglycerol and phospholipid hydrolysis in lipoprotein conversions and remodeling, we compared the activities of lipoprotein and hepatic lipases on human VLDL, IDL, LDL, and HDL2. Triacylglycerol and phospholipid hydrolysis by each enzyme were measured concomitan ... >> More
To explore the interactions of triacylglycerol and phospholipid hydrolysis in lipoprotein conversions and remodeling, we compared the activities of lipoprotein and hepatic lipases on human VLDL, IDL, LDL, and HDL2. Triacylglycerol and phospholipid hydrolysis by each enzyme were measured concomitantly in each lipoprotein class by measuring hydrolysis of [14C]triolein and [3H]dipalmitoylphosphatidylcholine incorporated into each lipoprotein by lipid transfer processes. Hepatic lipase was 2-3 times more efficient than lipoprotein lipase at hydrolyzing phospholipid both in absolute terms and in relation to triacylglycerol hydrolysis in all lipoproteins. The relationship between phospholipid hydrolysis and triacylglycerol hydrolysis was generally linear until half of particle triacylglycerol was hydrolyzed. For either enzyme acting on a single lipoprotein fraction, the degree of phosphohydrolysis closely correlated with triacylglycerol hydrolysis and was largely independent of the kinetics of hydrolysis, suggesting that triacylglycerol removed from a lipoprotein core is an important determinant of phospholipid removal via hydrolysis by the lipase. Phospholipid hydrolysis relative to triacylglycerol hydrolysis was most efficient in VLDL followed in descending order by IDL, HDL, and LDL. Even with hepatic lipase, phospholipid hydrolysis could not deplete VLDL and IDL of sufficient phospholipid molecules to account for the loss of surface phospholipid that accompanies triacylglycerol hydrolysis and decreasing core volume as LDL is formed (or for conversion of HDL2 to HDL3). Thus, shedding of whole phospholipid molecules, presumably in liposomal-like particles, must be a major mechanism for losing excess surface lipid as large lipoprotein particles are converted to smaller particles. Also, this shedding phenomenon, like phospholipid hydrolysis, is closely related to the hydrolysis of lipoprotein triacylglycerol. << Less