Reaction participants Show >> << Hide
- Name help_outline all-trans-4-hydroxyretinoate Identifier CHEBI:134178 Charge -1 Formula C20H27O3 InChIKeyhelp_outline KGUMXGDKXYTTEY-FRCNGJHJSA-M SMILEShelp_outline C=1(C(CCC(C1C)O)(C)C)/C=C/C(=C/C=C/C(=C/C([O-])=O)/C)/C 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline UDP-α-D-glucuronate Identifier CHEBI:58052 Charge -3 Formula C15H19N2O18P2 InChIKeyhelp_outline HDYANYHVCAPMJV-LXQIFKJMSA-K SMILEShelp_outline O[C@@H]1[C@@H](COP([O-])(=O)OP([O-])(=O)O[C@H]2O[C@@H]([C@@H](O)[C@H](O)[C@H]2O)C([O-])=O)O[C@H]([C@@H]1O)n1ccc(=O)[nH]c1=O 2D coordinates Mol file for the small molecule Search links Involved in 107 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline all-trans-4-hydroxy-4-O-(β-D-glucuronide)-retinoate Identifier CHEBI:139182 Charge -2 Formula C26H34O9 InChIKeyhelp_outline LVCMXFSJTNPFHH-YUJSZCEWSA-L SMILEShelp_outline C=1(C(CCC(C1C)O[C@H]2[C@@H]([C@H]([C@@H]([C@H](O2)C([O-])=O)O)O)O)(C)C)/C=C/C(=C/C=C/C(=C/C([O-])=O)/C)/C 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline UDP Identifier CHEBI:58223 Charge -3 Formula C9H11N2O12P2 InChIKeyhelp_outline XCCTYIAWTASOJW-XVFCMESISA-K SMILEShelp_outline O[C@@H]1[C@@H](COP([O-])(=O)OP([O-])([O-])=O)O[C@H]([C@@H]1O)n1ccc(=O)[nH]c1=O 2D coordinates Mol file for the small molecule Search links Involved in 576 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:55776 | RHEA:55777 | RHEA:55778 | RHEA:55779 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
4-hydroxyretinoic acid, a novel substrate for human liver microsomal UDP-glucuronosyltransferase(s) and recombinant UGT2B7.
Samokyszyn V.M., Gall W.E., Zawada G., Freyaldenhoven M.A., Chen G., Mackenzie P.I., Tephly T.R., Radominska-Pandya A.
It is suggested that formation of more polar metabolites of all-trans-retinoic acid (atRA) via oxidative pathways limits its biological activity. In this report, we investigated the biotransformation of oxidized products of atRA via glucuronidation. For this purpose, we synthesized 4-hydroxy-RA (4 ... >> More
It is suggested that formation of more polar metabolites of all-trans-retinoic acid (atRA) via oxidative pathways limits its biological activity. In this report, we investigated the biotransformation of oxidized products of atRA via glucuronidation. For this purpose, we synthesized 4-hydroxy-RA (4-OH-RA) in radioactive and nonradioactive form, 4-hydroxy-retinyl acetate (4-OH-RAc), and 5,6-epoxy-RA, all of which are major products of atRA oxidation. Glucuronidation of these retinoids by human liver microsomes and human recombinant UDP-glucuronosyltransferases (UGTs) was characterized and compared with the glucuronidation of atRA. The human liver microsomes glucuronidated 4-OH-RA and 4-OH-RAc with 6- and 3-fold higher activity than atRA, respectively. Analysis of the glucuronidation products showed that the hydroxyl-linked glucuronides of 4-OH-RA and 4-OH-RAc were the major products, as opposed to the formation of the carboxyl-linked glucuronide with atRA, 4-oxo-RA, and 5,6-epoxy-RA. We have also determined that human recombinant UGT2B7 can glucuronidate atRA, 4-OH-RA, and 4-OH-RAc with activities similar to those found in human liver microsomes. We therefore postulate that this human isoenzyme, which is expressed in human liver, kidney, and intestine, plays a key role in the biological fate of atRA. We also propose that atRA induces its own oxidative metabolism via a cytochrome P450 (CYP26) and is further biotransformed into glucuronides via UGT-mediated pathways. << Less
J. Biol. Chem. 275:6908-6914(2000) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.