Reaction participants Show >> << Hide
- Name help_outline 5-hydroxymethylfurfural Identifier CHEBI:412516 (Beilstein: 110889; CAS: 67-47-0) help_outline Charge 0 Formula C6H6O3 InChIKeyhelp_outline NOEGNKMFWQHSLB-UHFFFAOYSA-N SMILEShelp_outline [H]C(=O)c1ccc(CO)o1 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,709 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 2,5-diformylfuran Identifier CHEBI:83385 (CAS: 823-82-5) help_outline Charge 0 Formula C6H4O3 InChIKeyhelp_outline PXJJKVNIMAZHCB-UHFFFAOYSA-N SMILEShelp_outline O=Cc1ccc(C=O)o1 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O2 Identifier CHEBI:16240 (Beilstein: 3587191; CAS: 7722-84-1) help_outline Charge 0 Formula H2O2 InChIKeyhelp_outline MHAJPDPJQMAIIY-UHFFFAOYSA-N SMILEShelp_outline [H]OO[H] 2D coordinates Mol file for the small molecule Search links Involved in 449 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:43504 | RHEA:43505 | RHEA:43506 | RHEA:43507 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Enzyme-catalyzed oxidation of 5-hydroxymethylfurfural to furan-2,5-dicarboxylic acid.
Dijkman W.P., Groothuis D.E., Fraaije M.W.
Furan-2,5-dicarboxylic acid (FDCA) is a biobased platform chemical for the production of polymers. In the past few years, numerous multistep chemical routes have been reported on the synthesis of FDCA by oxidation of 5-hydroxymethylfurfural (HMF). Recently we identified an FAD-dependent enzyme whi ... >> More
Furan-2,5-dicarboxylic acid (FDCA) is a biobased platform chemical for the production of polymers. In the past few years, numerous multistep chemical routes have been reported on the synthesis of FDCA by oxidation of 5-hydroxymethylfurfural (HMF). Recently we identified an FAD-dependent enzyme which is active towards HMF and related compounds. This oxidase has the remarkable capability of oxidizing [5-(hydroxymethyl)furan-2-yl]methanol to FDCA, a reaction involving four consecutive oxidations. The oxidase can produce FDCA from HMF with high yield at ambient temperature and pressure. Examination of the underlying mechanism shows that the oxidase acts on alcohol groups only and depends on the hydration of aldehydes for the oxidation reaction required to form FDCA. << Less
Angew. Chem. Int. Ed. Engl. 53:6515-6518(2014) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.
-
Discovery and characterization of a 5-hydroxymethylfurfural oxidase from Methylovorus sp. strain MP688.
Dijkman W.P., Fraaije M.W.
In the search for useful and renewable chemical building blocks, 5-hydroxymethylfurfural (HMF) has emerged as a very promising candidate, as it can be prepared from sugars. HMF can be oxidized to 2,5-furandicarboxylic acid (FDCA), which is used as a substitute for petroleum-based terephthalate in ... >> More
In the search for useful and renewable chemical building blocks, 5-hydroxymethylfurfural (HMF) has emerged as a very promising candidate, as it can be prepared from sugars. HMF can be oxidized to 2,5-furandicarboxylic acid (FDCA), which is used as a substitute for petroleum-based terephthalate in polymer production. On the basis of a recently identified bacterial degradation pathway for HMF, candidate genes responsible for selective HMF oxidation have been identified. Heterologous expression of a protein from Methylovorus sp. strain MP688 in Escherichia coli and subsequent enzyme characterization showed that the respective gene indeed encodes an efficient HMF oxidase (HMFO). HMFO is a flavin adenine dinucleotide-containing oxidase and belongs to the glucose-methanol-choline-type flavoprotein oxidase family. Intriguingly, the activity of HMFO is not restricted to HMF, as it is active with a wide range of aromatic primary alcohols and aldehydes. The enzyme was shown to be relatively thermostable and active over a broad pH range. This makes HMFO a promising oxidative biocatalyst that can be used for the production of FDCA from HMF, a reaction involving both alcohol and aldehyde oxidations. << Less
Appl. Environ. Microbiol. 80:1082-1090(2014) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.
Comments
RHEA:43504 part of RHEA:32683.