Reaction participants Show >> << Hide
- Name help_outline a primary alcohol Identifier CHEBI:15734 Charge 0 Formula CH3OR SMILEShelp_outline *C(O)([H])[H] 2D coordinates Mol file for the small molecule Search links Involved in 590 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,709 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline an aldehyde Identifier CHEBI:17478 Charge 0 Formula CHOR SMILEShelp_outline [H]C([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 925 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O2 Identifier CHEBI:16240 (Beilstein: 3587191; CAS: 7722-84-1) help_outline Charge 0 Formula H2O2 InChIKeyhelp_outline MHAJPDPJQMAIIY-UHFFFAOYSA-N SMILEShelp_outline [H]OO[H] 2D coordinates Mol file for the small molecule Search links Involved in 449 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:19829 | RHEA:19830 | RHEA:19831 | RHEA:19832 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
Specific form(s) of this reaction
More general form(s) of this reaction
Publications
-
Structure-function characterization reveals new catalytic diversity in the galactose oxidase and glyoxal oxidase family.
Yin D.T., Urresti S., Lafond M., Johnston E.M., Derikvand F., Ciano L., Berrin J.G., Henrissat B., Walton P.H., Davies G.J., Brumer H.
Alcohol oxidases, including carbohydrate oxidases, have a long history of research that has generated fundamental biological understanding and biotechnological applications. Despite a long history of study, the galactose 6-oxidase/glyoxal oxidase family of mononuclear copper-radical oxidases, Auxi ... >> More
Alcohol oxidases, including carbohydrate oxidases, have a long history of research that has generated fundamental biological understanding and biotechnological applications. Despite a long history of study, the galactose 6-oxidase/glyoxal oxidase family of mononuclear copper-radical oxidases, Auxiliary Activity Family 5 (AA5), is currently represented by only very few characterized members. Here we report the recombinant production and detailed structure-function analyses of two homologues from the phytopathogenic fungi Colletotrichum graminicola and C. gloeosporioides, CgrAlcOx and CglAlcOx, respectively, to explore the wider biocatalytic potential in AA5. EPR spectroscopy and crystallographic analysis confirm a common active-site structure vis-à-vis the archetypal galactose 6-oxidase from Fusarium graminearum. Strikingly, however, CgrAlcOx and CglAlcOx are essentially incapable of oxidizing galactose and galactosides, but instead efficiently catalyse the oxidation of diverse aliphatic alcohols. The results highlight the significant potential of prospecting the evolutionary diversity of AA5 to reveal novel enzyme specificities, thereby informing both biology and applications. << Less
-
Purification and properties of alcohol oxidase from Candida methanosorbosa M-2003.
Suye S.
Alcohol oxidase from Candida methanosorbosa was purified about sixfold with a yield of 37.6% from the culture broth of Candida methanosorbosa M-2003. The enzyme preparation was homogeneous on slab gel electrophoresis. The purified enzyme had an optimal pH from 6.0 to 9.0 and was stable in the rang ... >> More
Alcohol oxidase from Candida methanosorbosa was purified about sixfold with a yield of 37.6% from the culture broth of Candida methanosorbosa M-2003. The enzyme preparation was homogeneous on slab gel electrophoresis. The purified enzyme had an optimal pH from 6.0 to 9.0 and was stable in the range 6.0-8.5. Its optimal temperature of reaction was 50 degrees C, and it was stable below 50 degrees C. In the presence of NaN3, the enzyme retained its initial activity at 30 degrees C for 35 days, indicating stability for a long term, so far. The isoelectric point was pH 4.3. Its molecular weight was 620, 000 by gel filtration chromatography and 80,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These results indicate that the enzyme consists of 8 subunits. << Less
-
Alcohol oxidase, a flavoprotein from several Basidiomycetes species. Crystallization by fractional precipitation with polyethylene glycol.
Janssen F.W., Ruelius H.W.