Enzymes
UniProtKB help_outline | 4 proteins |
Reaction participants Show >> << Hide
- Name help_outline 5α-androstane-3α,17β-diol Identifier CHEBI:36713 (Beilstein: 2694353; CAS: 1852-53-5) help_outline Charge 0 Formula C19H32O2 InChIKeyhelp_outline CBMYJHIOYJEBSB-KHOSGYARSA-N SMILEShelp_outline [H][C@@]12CC[C@@]3([H])[C@]4([H])CC[C@H](O)[C@@]4(C)CC[C@]3([H])[C@@]1(C)CC[C@@H](O)C2 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,186 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline androsterone Identifier CHEBI:16032 (Beilstein: 2217626; CAS: 53-41-8) help_outline Charge 0 Formula C19H30O2 InChIKeyhelp_outline QGXBDMJGAMFCBF-HLUDHZFRSA-N SMILEShelp_outline [H][C@@]12CCC(=O)[C@@]1(C)CC[C@@]1([H])[C@@]2([H])CC[C@@]2([H])C[C@H](O)CC[C@]12C 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,116 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:42124 | RHEA:42125 | RHEA:42126 | RHEA:42127 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Human 3alpha-hydroxysteroid dehydrogenase isoforms (AKR1C1-AKR1C4) of the aldo-keto reductase superfamily: functional plasticity and tissue distribution reveals roles in the inactivation and formation of male and female sex hormones.
Penning T.M., Burczynski M.E., Jez J.M., Hung C.F., Lin H.K., Ma H., Moore M., Palackal N., Ratnam K.
The kinetic parameters, steroid substrate specificity and identities of reaction products were determined for four homogeneous recombinant human 3alpha-hydroxysteroid dehydrogenase (3alpha-HSD) isoforms of the aldo-keto reductase (AKR) superfamily. The enzymes correspond to type 1 3alpha-HSD (AKR1 ... >> More
The kinetic parameters, steroid substrate specificity and identities of reaction products were determined for four homogeneous recombinant human 3alpha-hydroxysteroid dehydrogenase (3alpha-HSD) isoforms of the aldo-keto reductase (AKR) superfamily. The enzymes correspond to type 1 3alpha-HSD (AKR1C4), type 2 3alpha(17beta)-HSD (AKR1C3), type 3 3alpha-HSD (AKR1C2) and 20alpha(3alpha)-HSD (AKR1C1), and share at least 84% amino acid sequence identity. All enzymes acted as NAD(P)(H)-dependent 3-, 17- and 20-ketosteroid reductases and as 3alpha-, 17beta- and 20alpha-hydroxysteroid oxidases. The functional plasticity of these isoforms highlights their ability to modulate the levels of active androgens, oestrogens and progestins. Salient features were that AKR1C4 was the most catalytically efficient, with k(cat)/K(m) values for substrates that exceeded those obtained with other isoforms by 10-30-fold. In the reduction direction, all isoforms inactivated 5alpha-dihydrotestosterone (17beta-hydroxy-5alpha-androstan-3-one; 5alpha-DHT) to yield 5alpha-androstane-3alpha,17beta-diol (3alpha-androstanediol). However, only AKR1C3 reduced Delta(4)-androstene-3,17-dione to produce significant amounts of testosterone. All isoforms reduced oestrone to 17beta-oestradiol, and progesterone to 20alpha-hydroxy-pregn-4-ene-3,20-dione (20alpha-hydroxyprogesterone). In the oxidation direction, only AKR1C2 converted 3alpha-androstanediol to the active hormone 5alpha-DHT. AKR1C3 and AKR1C4 oxidized testosterone to Delta(4)-androstene-3,17-dione. All isoforms oxidized 17beta-oestradiol to oestrone, and 20alpha-hydroxyprogesterone to progesterone. Discrete tissue distribution of these AKR1C enzymes was observed using isoform-specific reverse transcriptase-PCR. AKR1C4 was virtually liver-specific and its high k(cat)/K(m) allows this enzyme to form 5alpha/5beta-tetrahydrosteroids robustly. AKR1C3 was most prominent in the prostate and mammary glands. The ability of AKR1C3 to interconvert testosterone with Delta(4)-androstene-3,17-dione, but to inactivate 5alpha-DHT, is consistent with this enzyme eliminating active androgens from the prostate. In the mammary gland, AKR1C3 will convert Delta(4)-androstene-3,17-dione to testosterone (a substrate aromatizable to 17beta-oestradiol), oestrone to 17beta-oestradiol, and progesterone to 20alpha-hydroxyprogesterone, and this concerted reductive activity may yield a pro-oesterogenic state. AKR1C3 is also the dominant form in the uterus and is responsible for the synthesis of 3alpha-androstanediol which has been implicated as a parturition hormone. The major isoforms in the brain, capable of synthesizing anxiolytic steroids, are AKR1C1 and AKR1C2. These studies are in stark contrast with those in rat where only a single AKR with positional- and stereo-specificity for 3alpha-hydroxysteroids exists. << Less
Biochem. J. 351:67-77(2000) [PubMed] [EuropePMC]
This publication is cited by 15 other entries.
-
Human cytosolic 3alpha-hydroxysteroid dehydrogenases of the aldo-keto reductase superfamily display significant 3beta-hydroxysteroid dehydrogenase activity: implications for steroid hormone metabolism and action.
Steckelbroeck S., Jin Y., Gopishetty S., Oyesanmi B., Penning T.M.
The source of NADPH-dependent cytosolic 3beta-hydroxysteroid dehydrogenase (3beta-HSD) activity is unknown to date. This important reaction leads e.g. to the reduction of the potent androgen 5alpha-dihydrotestosterone (DHT) into inactive 3beta-androstanediol (3beta-Diol). Four human cytosolic aldo ... >> More
The source of NADPH-dependent cytosolic 3beta-hydroxysteroid dehydrogenase (3beta-HSD) activity is unknown to date. This important reaction leads e.g. to the reduction of the potent androgen 5alpha-dihydrotestosterone (DHT) into inactive 3beta-androstanediol (3beta-Diol). Four human cytosolic aldo-keto reductases (AKR1C1-AKR1C4) are known to act as non-positional-specific 3alpha-/17beta-/20alpha-HSDs. We now demonstrate that AKR1Cs catalyze the reduction of DHT into both 3alpha- and 3beta-Diol (established by (1)H NMR spectroscopy). The rates of 3alpha-versus 3beta-Diol formation varied significantly among the isoforms, but with each enzyme both activities were equally inhibited by the nonsteroidal anti-inflammatory drug flufenamic acid. In vitro, AKR1Cs also expressed substantial 3alpha[17beta]-hydroxysteroid oxidase activity with 3alpha-Diol as the substrate. However, in contrast to the 3-ketosteroid reductase activity of the enzymes, their hydroxysteroid oxidase activity was potently inhibited by low micromolar concentrations of the opposing cofactor (NADPH). This indicates that in vivo all AKR1Cs will preferentially work as reductases. Human hepatoma (HepG2) cells (which lack 3beta-HSD/Delta(5-4) ketosteroid isomerase mRNA expression, but express AKR1C1-AKR1C3) were able to convert DHT into 3alpha- and 3beta-Diol. This conversion was inhibited by flufenamic acid establishing the in vivo significance of the 3alpha/3beta-HSD activities of the AKR1C enzymes. Molecular docking simulations using available crystal structures of AKR1C1 and AKR1C2 demonstrated how 3alpha/3beta-HSD activities are achieved. The observation that AKR1Cs are a source of 3beta-tetrahydrosteroids is of physiological significance because: (i) the formation of 3beta-Diol (in contrast to 3alpha-Diol) is virtually irreversible, (ii) 3beta-Diol is a pro-apoptotic ligand for estrogen receptor beta, and (iii) 3beta-tetrahydrosteroids act as gamma-aminobutyric acid type A receptor antagonists. << Less
J. Biol. Chem. 279:10784-10795(2004) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.