Enzymes
UniProtKB help_outline | 568 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline an L-α-amino acid Identifier CHEBI:59869 Charge 0 Formula C2H4NO2R SMILEShelp_outline [NH3+][C@@H]([*])C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 366 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a D-α-amino acid Identifier CHEBI:59871 Charge 0 Formula C2H4NO2R SMILEShelp_outline [NH3+][C@H]([*])C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 50 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:18317 | RHEA:18318 | RHEA:18319 | RHEA:18320 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
Specific form(s) of this reaction
- RHEA:62772
- RHEA:60516
- RHEA:59808
- RHEA:59804
- RHEA:59404
- RHEA:59400
- RHEA:59396
- RHEA:59280
- RHEA:59276
- RHEA:59272
- RHEA:59188
- RHEA:51884
- RHEA:45560
- RHEA:22864
- RHEA:20249
- RHEA:18069
- RHEA:14973
- RHEA:13913
- RHEA:12813
- RHEA:12492
- RHEA:11584
- RHEA:10980
- RHEA:10680
Publications
-
Structural basis for the broad specificity of a new family of amino-acid racemases.
Espaillat A., Carrasco-Lopez C., Bernardo-Garcia N., Pietrosemoli N., Otero L.H., Alvarez L., de Pedro M.A., Pazos F., Davis B.M., Waldor M.K., Hermoso J.A., Cava F.
Broad-spectrum amino-acid racemases (Bsrs) enable bacteria to generate noncanonical D-amino acids, the roles of which in microbial physiology, including the modulation of cell-wall structure and the dissolution of biofilms, are just beginning to be appreciated. Here, extensive crystallographic, mu ... >> More
Broad-spectrum amino-acid racemases (Bsrs) enable bacteria to generate noncanonical D-amino acids, the roles of which in microbial physiology, including the modulation of cell-wall structure and the dissolution of biofilms, are just beginning to be appreciated. Here, extensive crystallographic, mutational, biochemical and bioinformatic studies were used to define the molecular features of the racemase BsrV that enable this enzyme to accommodate more diverse substrates than the related PLP-dependent alanine racemases. Conserved residues were identified that distinguish BsrV and a newly defined family of broad-spectrum racemases from alanine racemases, and these residues were found to be key mediators of the multispecificity of BrsV. Finally, the structural analysis of an additional Bsr that was identified in the bioinformatic analysis confirmed that the distinguishing features of BrsV are conserved among Bsr family members. << Less
Acta Crystallogr. D 70:79-90(2014) [PubMed] [EuropePMC]
This publication is cited by 12 other entries.
-
A periplasmic, pyridoxal-5'-phosphate-dependent amino acid racemase in Pseudomonas taetrolens.
Matsui D., Oikawa T., Arakawa N., Osumi S., Lausberg F., Stabler N., Freudl R., Eggeling L.
The pyridoxal-5'-phosphate (PLP)-dependent amino acid racemases occur in almost every bacterium but may differ considerably with respect to substrate specificity. We here isolated the cloned broad substrate specificity racemase ArgR of Pseudomonas taetrolens from Escherichia coli by classical proc ... >> More
The pyridoxal-5'-phosphate (PLP)-dependent amino acid racemases occur in almost every bacterium but may differ considerably with respect to substrate specificity. We here isolated the cloned broad substrate specificity racemase ArgR of Pseudomonas taetrolens from Escherichia coli by classical procedures. The racemase was biochemically characterized and amongst other aspects it was confirmed that it is mostly active with lysine, arginine and ornithine, but merely weakly active with alanine, whereas the alanine racemase of the same organism studied in comparison acts on alanine only. Unexpectedly, sequencing the amino-terminal end of ArgR revealed processing of the protein, with a signal peptide cleaved off. Subsequent localization studies demonstrated that in both P. taetrolens and E. coli ArgR activity was almost exclusively present in the periplasm, a feature so far unknown for any amino acid racemase. An ArgR-derivative carrying a carboxy-terminal His-tag was made and this was demonstrated to localize even in an E. coli mutant devoid of the twin-arginine translocation (Tat) pathway in the periplasm. These data indicate that ArgR is synthesized as a prepeptide and translocated in a Tat-independent manner. We therefore propose that ArgR translocation depends on the Sec system and a post-translocational insertion of PLP occurs. As further experiments showed, ArgR is necessary for the catabolism of D: -arginine and D: -lysine by P. taetrolens. << Less
Appl. Microbiol. Biotechnol. 83:1045-1054(2009) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Amino acid racemization in Pseudomonas putida KT2440.
Radkov A.D., Moe L.A.
D-Amino acids have been shown to play an increasingly diverse role in bacterial physiology, yet much remains to be learned about their synthesis and catabolism. Here we used the model soil- and rhizosphere-dwelling organism Pseudomonas putida KT2440 to elaborate on the genomics and enzymology of d ... >> More
D-Amino acids have been shown to play an increasingly diverse role in bacterial physiology, yet much remains to be learned about their synthesis and catabolism. Here we used the model soil- and rhizosphere-dwelling organism Pseudomonas putida KT2440 to elaborate on the genomics and enzymology of d-amino acid metabolism. P. putida KT2440 catabolized the d-stereoisomers of lysine, phenylalanine, arginine, alanine, and hydroxyproline as the sole carbon and nitrogen sources. With the exception of phenylalanine, each of these amino acids was racemized by P. putida KT2440 enzymes. Three amino acid racemases were identified from a genomic screen, and the enzymes were further characterized in vitro. The putative biosynthetic alanine racemase Alr showed broad substrate specificity, exhibiting measurable racemase activity with 9 of the 19 chiral amino acids. Among these amino acids, activity was the highest with lysine, and the k(cat)/K(m) values with l- and d-lysine were 3 orders of magnitude greater than the k(cat)/K(m) values with l- and d-alanine. Conversely, the putative catabolic alanine racemase DadX showed narrow substrate specificity, clearly preferring only the alanine stereoisomers as the substrates. However, DadX did show 6- and 9-fold higher k(cat)/K(m) values than Alr with l- and d-alanine, respectively. The annotated proline racemase ProR of P. putida KT2440 showed negligible activity with either stereoisomer of the 19 chiral amino acids but exhibited strong epimerization activity with hydroxyproline as the substrate. Comparative genomic analysis revealed differences among pseudomonads with respect to alanine racemase genes that may point to different roles for these genes among closely related species. << Less
-
Crystalline amino acid racemase with low substrate specificity.
Soda K., Osumi T.
Biochem Biophys Res Commun 35:363-368(1969) [PubMed] [EuropePMC]