Enzymes
UniProtKB help_outline | 5 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline L-proline Identifier CHEBI:60039 Charge 0 Formula C5H9NO2 InChIKeyhelp_outline ONIBWKKTOPOVIA-BYPYZUCNSA-N SMILEShelp_outline [O-]C(=O)[C@@H]1CCC[NH2+]1 2D coordinates Mol file for the small molecule Search links Involved in 26 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline D-proline Identifier CHEBI:57726 Charge 0 Formula C5H9NO2 InChIKeyhelp_outline ONIBWKKTOPOVIA-SCSAIBSYSA-N SMILEShelp_outline [O-]C(=O)[C@H]1CCC[NH2+]1 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:10680 | RHEA:10681 | RHEA:10682 | RHEA:10683 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
A B-cell mitogen from a pathogenic trypanosome is a eukaryotic proline racemase.
Reina-San-Martin B., Degrave W., Rougeot C., Cosson A., Chamond N., Cordeiro-da-Silva A., Arala-Chaves M., Coutinho A., Minoprio P.
Lymphocyte polyclonal activation is a generalized mechanism of immune evasion among pathogens. In a mouse model of Trypanosoma cruzi infection (American trypanosomiasis), reduced levels of polyclonal lymphocyte responses correlate with resistance to infection and cardiopathy. We report here the ch ... >> More
Lymphocyte polyclonal activation is a generalized mechanism of immune evasion among pathogens. In a mouse model of Trypanosoma cruzi infection (American trypanosomiasis), reduced levels of polyclonal lymphocyte responses correlate with resistance to infection and cardiopathy. We report here the characterization of a parasite protein with B-cell mitogenic properties in culture supernatants of infective forms, the cloning of the corresponding gene and the analysis of the biological properties of its product. We characterized the protein as a co-factor-independent proline racemase, and show that its expression as a cytoplasmic and/or membrane-associated protein is life-stage specific. Inhibition studies indicate that availability of the racemase active site is necessary for mitogenic activity. This is the first report to our knowledge of a eukaryotic amino acid racemase gene. Our findings have potential consequences for the development of new immune therapies and drug design against pathogens. << Less
-
Energetics of proline racemase: racemization of unlabeled proline in the unsaturated, saturated, and oversaturated regimes.
Fisher L.M., Albery W.J., Knowles J.R.
The interconversion of L- and D-proline catalyzed by proline racemase has been studied. The entire time course of the approach to equilibrium has been followed. After a short time the product concentration is significant, and the reaction runs under reversible conditions. As the total substrate co ... >> More
The interconversion of L- and D-proline catalyzed by proline racemase has been studied. The entire time course of the approach to equilibrium has been followed. After a short time the product concentration is significant, and the reaction runs under reversible conditions. As the total substrate concentration is increased, the system moves from the unsaturated regime into the saturated regime. At very high substrate levels under the reversible conditions used, the rate constant for substrate racemization falls, as the system moves into the "oversaturated" regime. Here, the net rate of the enzyme-catalyzed reaction is limited by the rate of return of the free enzyme from the form that liberates product back to the form that binds substrate. The results are analyzed in terms of the simple mechanism (table; see text) and illustrate the additional information that is available from reactions studied under reversible conditions. In the unsaturated region the value of the second-order rate constant kU (equivalent to kcat/Km) is 9 X 10(5) M-1 s-1 in each direction. In the saturated region, kcat = kcat = 2600 s-1 and Km = 2.9 mM. In the oversaturated region, the rate constant kO is 81 M s-1. The substrate concentration at which unsaturated and saturated terms contribute equally is 2.9 mM, and the substrate concentration at which saturated and oversaturated terms contribute equally is 125 mM. << Less
-
Reaction mechanism and structure of the active site of proline racemase.
Rudnick G., Abeles R.H.
Proline racemase catalyzes the interconversion of D- and L-proline. Previous studies in this laboratory have established that the reaction proceeds by means of a two-base mechanism in which one base on the enzyme removes the substrate alpha-hydrogen as a proton and the conjugate acid of another ba ... >> More
Proline racemase catalyzes the interconversion of D- and L-proline. Previous studies in this laboratory have established that the reaction proceeds by means of a two-base mechanism in which one base on the enzyme removes the substrate alpha-hydrogen as a proton and the conjugate acid of another base donates a proton to the opposite side of the alpha-carbon (Cardinale, G.J., and Abeles, R.H., (1968), Biochemistry 7, 3970. An assumption of the proposed mechanism was that no proton exchange occurs from the enzyme-substrate complex. In the present study, we have shown that the rate of 3H release from DL-[alpha-3H]proline, in the presence of proline racemase, decreases with increasing proline concentrations. These results establish that release of the substrate derived proton from the enzyme occurs largely, possibly exclusively, after release of the product. Under initial velocity conditions, the rate of 3H release from L-[alpha-3H]proline is not reduced with increasing L-proline concentrations. Thus, the enzyme-bound proton derived from one isomer can only be "captured" by the other isomer. We conclude that there are two forms of the enzyme; one binds L-proline and the other D-proline. Release of the substrate derived proton from enzyme is more rapid than the interconversion of these two forms. These results are consistent with the previously proposed mechanism. Proline racemase is composed of similar subunits of mol wt 38,000 as determined by gel electrophoresis in the presence of sodium dodecyl sulfate. Equilibrium dialysis experiments detect only one substrate binding site for every two subunits. When the oxidized form of the enzyme, which is inactive and cannot bind substrate, is reduced by thiol to yield active enzyme, two cysteine sulfhydryl groups per dimer become available to react with iodoacetate. Inactivation of the enzyme occurs upon modification of one of these cysteines. All iodoacetate incorporation occurs at the same point in the primary sequence of the enzyme, and can be prevented by the presence of proline or pyrrole-2-carboxylate, a substrate analog. A model is proposed in which a single active site is formed by elements of two identical subunits. Although the data are consistent with this model, another interpretation, in which half of the subunits are nonfunctional, cannot be ruled out. << Less
-
The catalytic activity of proline racemase: a quantum mechanical/molecular mechanical study.
Stenta M., Calvaresi M., Altoe P., Spinelli D., Garavelli M., Bottoni A.
The enzyme proline racemase from the eukaryotic parasite Trypanosoma cruzi (responsible for endemic Chagas disease) catalyzes the reversible stereoinversion of chiral Calpha in proline. We employed a new combined quantum mechanical and molecular mechanical (QM/MM) potential to study the reaction m ... >> More
The enzyme proline racemase from the eukaryotic parasite Trypanosoma cruzi (responsible for endemic Chagas disease) catalyzes the reversible stereoinversion of chiral Calpha in proline. We employed a new combined quantum mechanical and molecular mechanical (QM/MM) potential to study the reaction mechanism of the enzyme. Three critical points were found: two almost isoenergetic minima (M1a and M2a), in which the enzyme is bound to L- and D-Pro, respectively, and a transition state (TSCa), unveiling a highly asynchronous concerted process. A systematic analysis was performed on the optimized geometries to point out the key role played by some residues in stabilizing the transition state. << Less
-
Energetics of proline racemase: double fractionation experiment, a test for concertedness and for transition-state dominance.
Belasco J.G., Albery W.J., Knowles J.R.
To test whether a reaction involving the making and/or breaking of two bonds at two sites is concerted (and proceeds through a single transition state) or is stepwise (and involves a reaction intermediate in which only one bond has been made or broken), we have measured the isotopic fractionation ... >> More
To test whether a reaction involving the making and/or breaking of two bonds at two sites is concerted (and proceeds through a single transition state) or is stepwise (and involves a reaction intermediate in which only one bond has been made or broken), we have measured the isotopic fractionation at one site as a function of isotopic substitution at the other site. In the case of proline racemase, the discrimination against solvent deuterium in the product when the reaction is run in mixed H2O-D2O is measured for the reaction both of [2-1H]proline and of [2-2H]proline. The isotopic fractionation at the solvent site may in principle be smaller, the same, or larger, when the 2H-labeled substrate is used rather than the 1H substrate, and--depending upon the nature of the catalyzing groups--this information indicates whether the reaction is stepwise, or concerted, or whether an isotopically insensitive transition state is partially rate determining. Experimentally, we have found that the discrimination against solvent deuterium in the product L-proline is the same, whether D-[2-1H]proline or D-[2-2H]proline is the substrate. This result requires that the substrate and product "on-off" steps are faster than the racemization step and that the racemization reaction proceeds either in a concerted manner or in a stepwise fashion involving enzyme catalytic groups (e.g., thiols) having ground-state fractionation factors around 0.5. << Less
-
Molecular and structural discrimination of proline racemase and hydroxyproline-2-epimerase from nosocomial and bacterial pathogens.
Goytia M., Chamond N., Cosson A., Coatnoan N., Hermant D., Berneman A., Minoprio P.
The first eukaryotic proline racemase (PRAC), isolated from the human Trypanosoma cruzi pathogen, is a validated therapeutic target against Chagas' disease. This essential enzyme is implicated in parasite life cycle and infectivity and its ability to trigger host B-cell nonspecific hypergammaglobu ... >> More
The first eukaryotic proline racemase (PRAC), isolated from the human Trypanosoma cruzi pathogen, is a validated therapeutic target against Chagas' disease. This essential enzyme is implicated in parasite life cycle and infectivity and its ability to trigger host B-cell nonspecific hypergammaglobulinemia contributes to parasite evasion and persistence. Using previously identified PRAC signatures and data mining we present the identification and characterization of a novel PRAC and five hydroxyproline epimerases (HyPRE) from pathogenic bacteria. Single-mutation of key HyPRE catalytic cysteine abrogates enzymatic activity supporting the presence of two reaction centers per homodimer. Furthermore, evidences are provided that Brucella abortus PrpA [for 'proline racemase' virulence factor A] and homologous proteins from two Brucella spp are bona fide HyPREs and not 'one way' directional PRACs as described elsewhere. Although the mechanisms of aminoacid racemization and epimerization are conserved between PRAC and HyPRE, our studies demonstrate that substrate accessibility and specificity partly rely on constraints imposed by aromatic or aliphatic residues distinctively belonging to the catalytic pockets. Analysis of PRAC and HyPRE sequences along with reaction center structural data disclose additional valuable elements for in silico discrimination of the enzymes. Furthermore, similarly to PRAC, the lymphocyte mitogenicity displayed by HyPREs is discussed in the context of bacterial metabolism and pathogenesis. Considering tissue specificity and tropism of infectious pathogens, it would not be surprising if upon infection PRAC and HyPRE play important roles in the regulation of the intracellular and extracellular amino acid pool profiting the microrganism with precursors and enzymatic pathways of the host. << Less
PLoS ONE 2:E885-E885(2007) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.