Enzymes
UniProtKB help_outline | 1 proteins |
Reaction participants Show >> << Hide
- Name help_outline aminoacetaldehyde Identifier CHEBI:58213 Charge 1 Formula C2H6NO InChIKeyhelp_outline LYIIBVSRGJSHAV-UHFFFAOYSA-O SMILEShelp_outline [NH3+]CC=O 2D coordinates Mol file for the small molecule Search links Involved in 7 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,190 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline glycine Identifier CHEBI:57305 Charge 0 Formula C2H5NO2 InChIKeyhelp_outline DHMQDGOQFOQNFH-UHFFFAOYSA-N SMILEShelp_outline [NH3+]CC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 145 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,120 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:81191 | RHEA:81192 | RHEA:81193 | RHEA:81194 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
The uncharacterized Pseudomonas aeruginosa PA4189 is a novel and efficient aminoacetaldehyde dehydrogenase.
Fernandez-Silva A., Juarez-Vazquez A.L., Gonzalez-Segura L., Juarez-Diaz J.A., Munoz-Clares R.A.
Neither the Pseudomonas aeruginosa aldehyde dehydrogenase encoded by the PA4189 gene nor its ortholog proteins have been biochemically or structurally characterized and their physiological function is unknown. We cloned the PA4189 gene, obtained the PA4189 recombinant protein, and studied its stru ... >> More
Neither the Pseudomonas aeruginosa aldehyde dehydrogenase encoded by the PA4189 gene nor its ortholog proteins have been biochemically or structurally characterized and their physiological function is unknown. We cloned the PA4189 gene, obtained the PA4189 recombinant protein, and studied its structure-function relationships. PA4189 is an NAD+-dependent aminoaldehyde dehydrogenase highly efficient with protonated aminoacetaldehyde and 3-aminopropionaldehyde, which are much more preferred to the non-protonated species as indicated by pH studies. Based on the higher activity with aminoacetaldehyde than with 3-aminopropionaldehyde, we propose that aminoacetaldehyde might be the PA4189 physiological substrate. Even though at the physiological pH of P. aeruginosa cells the non-protonated aminoacetaldehyde species will be predominant, and despite the competition of these species with the protonated ones, PA4189 would very efficiently oxidize ACTAL in vivo, producing glycine. To our knowledge, PA4189 is the first reported enzyme that might metabolize ACTAL, which is considered a dead-end metabolite because its consuming reactions are unknown. The PA4189 crystal structure reported here suggested that the charge and size of the active-site residue Glu457, which narrows the aldehyde-entrance tunnel, greatly define the specificity for small positively charged aldehydes, as confirmed by the kinetics of the E457G and E457Q variants. Glu457 and the residues that determine Glu457 conformation inside the active site are conserved in the PA4189 orthologs, which we only found in proteobacteria species. Also is conserved the PA4189 genomic neighborhood, which suggests that PA4189 participates in an uncharacterized metabolic pathway. Our results open the door to future efforts to characterize this pathway. << Less
Biochem. J. 480:259-281(2023) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.