Reaction participants Show >> << Hide
- Name help_outline a fatty aldehyde Identifier CHEBI:35746 Charge 0 Formula CHOR SMILEShelp_outline [*]C=O 2D coordinates Mol file for the small molecule Search links Involved in 145 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADP+ Identifier CHEBI:58349 Charge -3 Formula C21H25N7O17P3 InChIKeyhelp_outline XJLXINKUBYWONI-NNYOXOHSSA-K SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,294 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a fatty acid Identifier CHEBI:28868 Charge -1 Formula CO2R SMILEShelp_outline [O-]C([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,538 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADPH Identifier CHEBI:57783 (Beilstein: 10411862) help_outline Charge -4 Formula C21H26N7O17P3 InChIKeyhelp_outline ACFIXJIJDZMPPO-NNYOXOHSSA-J SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,288 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:80823 | RHEA:80824 | RHEA:80825 | RHEA:80826 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
Specific form(s) of this reaction
More general form(s) of this reaction
Publications
-
Expression and initial characterization of human ALDH3B1.
Marchitti S.A., Orlicky D.J., Vasiliou V.
Aldehyde dehydrogenases (ALDHs) are critical enzymes in the metabolism of endogenous and exogenous aldehydes. The human genome contains 19 putatively functional ALDH genes; ALDH3B1 belongs to the ALDH3 family. While recent studies have linked the ALDH3B1 locus to schizophrenia, nothing was known, ... >> More
Aldehyde dehydrogenases (ALDHs) are critical enzymes in the metabolism of endogenous and exogenous aldehydes. The human genome contains 19 putatively functional ALDH genes; ALDH3B1 belongs to the ALDH3 family. While recent studies have linked the ALDH3B1 locus to schizophrenia, nothing was known, until now, about the properties and significance of the ALDH3B1 protein. The aim of this study was to characterize the ALDH3B1 protein. Human ALDH3B1 was baculovirus-expressed and found to be catalytically active towards medium- and long-chain aliphatic aldehydes and the aromatic aldehyde benzaldehyde. Western blot analyses indicate that ALDH3B1 is highly expressed in kidney and liver and moderately expressed in various brain regions. ALDH3B1-transfected HEK293 cells were significantly protected against cytotoxicity induced by the lipid peroxidation product octanal when compared to vector-transfected cells. This study shows for the first time the functionality, expression and protective role of ALDH3B1 and indicates a potential physiological role of ALDH3B1 against oxidative stress. << Less
Biochem. Biophys. Res. Commun. 356:792-798(2007) [PubMed] [EuropePMC]
This publication is cited by 9 other entries.
-
Shifting the NAD/NADP preference in class 3 aldehyde dehydrogenase.
Perozich J., Kuo I., Wang B.C., Boesch J.S., Lindahl R., Hempel J.
Among pyridine-nucleotide-dependent oxidoreductases, the class 3 family of aldehyde dehydrogenases (ALDHs) is unusual in its ability to function with either NAD or NADP. This is all the more surprising because an acidic residue, Glu140, coordinates the adenine ribose 2' hydroxyl. In many NAD-depen ... >> More
Among pyridine-nucleotide-dependent oxidoreductases, the class 3 family of aldehyde dehydrogenases (ALDHs) is unusual in its ability to function with either NAD or NADP. This is all the more surprising because an acidic residue, Glu140, coordinates the adenine ribose 2' hydroxyl. In many NAD-dependent dehydrogenases a similarly placed carboxylate is thought to be responsible for exclusion of NADP. The corresponding residue in most (approximately 71%) sequences in the ALDH extended family is also Glu, and most of these are NAD-specific enzymes. Site-directed mutagenesis was performed on this residue in rat class 3 ALDH. Our results indicate that this residue contributes to tighter binding of NAD in the native enzyme, but suggest that additional factors must contribute to the ability to utilize NADP. Mutagenesis of an adjacent basic residue (Lys137) indicates that it is even more essential for binding both coenzymes, consistent with its conservation in nearly all ALDHs (> 98%). << Less