Reaction participants Show >> << Hide
- Name help_outline (3R)-hydroxy-(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosahexaenoyl-CoA Identifier CHEBI:229700 Charge -4 Formula C45H66N7O18P3S InChIKeyhelp_outline JJCGUWRDULVWQG-DNZWJRPLSA-J SMILEShelp_outline C([C@H](CC(SCCNC(CCNC(=O)[C@@H](C(COP(OP(OC[C@H]1O[C@@H](N2C3=C(C(=NC=N3)N)N=C2)[C@@H]([C@@H]1OP([O-])([O-])=O)O)(=O)[O-])(=O)[O-])(C)C)O)=O)=O)O)C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\CC 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,190 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 3-oxo-(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosahexaenoyl-CoA Identifier CHEBI:74304 Charge -4 Formula C45H64N7O18P3S InChIKeyhelp_outline DNHDPAXPQGYGIJ-KWFBMMABSA-J SMILEShelp_outline CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CCC(=O)CC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,120 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:79191 | RHEA:79192 | RHEA:79193 | RHEA:79194 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Metabolism of highly unsaturated n-3 and n-6 fatty acids.
Sprecher H.
Biochim Biophys Acta 1486:219-231(2000) [PubMed] [EuropePMC]
This publication is cited by 11 other entries.
-
The physiological functions of human peroxisomes.
Wanders R.J.A., Baes M., Ribeiro D., Ferdinandusse S., Waterham H.R.
Peroxisomes are subcellular organelles that play a central role in human physiology by catalyzing a range of unique metabolic functions. The importance of peroxisomes for human health is exemplified by the existence of a group of usually severe diseases caused by an impairment in one or more perox ... >> More
Peroxisomes are subcellular organelles that play a central role in human physiology by catalyzing a range of unique metabolic functions. The importance of peroxisomes for human health is exemplified by the existence of a group of usually severe diseases caused by an impairment in one or more peroxisomal functions. Among others these include the Zellweger spectrum disorders, X-linked adrenoleukodystrophy, and Refsum disease. To fulfill their role in metabolism, peroxisomes require continued interaction with other subcellular organelles including lipid droplets, lysosomes, the endoplasmic reticulum, and mitochondria. In recent years it has become clear that the metabolic alliance between peroxisomes and other organelles requires the active participation of tethering proteins to bring the organelles physically closer together, thereby achieving efficient transfer of metabolites. This review intends to describe the current state of knowledge about the metabolic role of peroxisomes in humans, with particular emphasis on the metabolic partnership between peroxisomes and other organelles and the consequences of genetic defects in these processes. We also describe the biogenesis of peroxisomes and the consequences of the multiple genetic defects therein. In addition, we discuss the functional role of peroxisomes in different organs and tissues and include relevant information derived from model systems, notably peroxisomal mouse models. Finally, we pay particular attention to a hitherto underrated role of peroxisomes in viral infections. << Less
Physiol Rev 103:957-1024(2023) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.