Enzymes
| UniProtKB help_outline | 4,394 proteins |
Reaction participants Show >> << Hide
-
Namehelp_outline
Fe(III)-heme b-[protein]
Identifier
RHEA-COMP:18976
Reactive part
help_outline
- Name help_outline Fe(III)-heme b Identifier CHEBI:55376 Charge -1 Formula C34H30FeN4O4 InChIKeyhelp_outline GGIDWJQWCUJYRY-RGGAHWMASA-J SMILEShelp_outline CC1=C(CCC([O-])=O)C2=[N+]3C1=Cc1c(C)c(C=C)c4C=C5C(C)=C(C=C)C6=[N+]5[Fe-]3(n14)n1c(=C6)c(C)c(CCC([O-])=O)c1=C2 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline nitric oxide Identifier CHEBI:16480 (CAS: 10102-43-9) help_outline Charge 0 Formula NO InChIKeyhelp_outline MWUXSHHQAYIFBG-UHFFFAOYSA-N SMILEShelp_outline [N]=O 2D coordinates Mol file for the small molecule Search links Involved in 25 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,485 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
Fe(II)-heme b-[protein]
Identifier
RHEA-COMP:18975
Reactive part
help_outline
- Name help_outline heme b Identifier CHEBI:60344 Charge -2 Formula C34H30FeN4O4 InChIKeyhelp_outline KABFMIBPWCXCRK-RGGAHWMASA-J SMILEShelp_outline CC1=C(CCC([O-])=O)C2=[N+]3C1=Cc1c(C)c(C=C)c4C=C5C(C)=C(C=C)C6=[N+]5[Fe--]3(n14)n1c(=C6)c(C)c(CCC([O-])=O)c1=C2 2D coordinates Mol file for the small molecule Search links Involved in 22 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline nitrite Identifier CHEBI:16301 (CAS: 14797-65-0) help_outline Charge -1 Formula NO2 InChIKeyhelp_outline IOVCWXUNBOPUCH-UHFFFAOYSA-M SMILEShelp_outline [O-]N=O 2D coordinates Mol file for the small molecule Search links Involved in 80 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,932 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
| RHEA:77711 | RHEA:77712 | RHEA:77713 | RHEA:77714 | |
|---|---|---|---|---|
| Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
| UniProtKB help_outline |
|
|||
| MetaCyc help_outline |
Publications
-
Plant and cyanobacterial hemoglobins reduce nitrite to nitric oxide under anoxic conditions.
Sturms R., DiSpirito A.A., Hargrove M.S.
The ability of ferrous hemoglobins to reduce nitrite to form nitric oxide has been demonstrated for hemoglobins from animals, including myoglobin, blood cell hemoglobin, neuroglobin, and cytoglobin. In all cases, the rate constants for the bimolecular reactions with nitrite are relatively slow, wi ... >> More
The ability of ferrous hemoglobins to reduce nitrite to form nitric oxide has been demonstrated for hemoglobins from animals, including myoglobin, blood cell hemoglobin, neuroglobin, and cytoglobin. In all cases, the rate constants for the bimolecular reactions with nitrite are relatively slow, with maximal values of ~5 M(-1) s(-1) at pH 7. Combined with the relatively low concentrations of nitrite found in animal blood plasma (normally no greater than 13 μM), these slow reaction rates are unlikely to contribute significantly to hemoglobin oxidation, nitrite reduction, or NO production. Plants and cyanobacteria, however, must contend with much higher (millimolar) nitrite concentrations necessitated by assimilatory nitrogen metabolism during hypoxic growth, such as the conditions commonly found during flooding or in waterlogged soil. Here we report rate constants for nitrite reduction by a ferrous plant hemoglobin (rice nonsymbiotic hemoglobin 1) and a ferrous cyanobacterial hemoglobin from Synechocystis that are more than 10 times faster than those observed for animal hemoglobins. These rate constants, along with the relatively high concentrations of nitrite present during hypoxia, suggest that plant and cyanobacterial hemoglobins could serve as anaerobic nitrite reductases in vivo. << Less
-
Enzymatic function of hemoglobin as a nitrite reductase that produces NO under allosteric control.
Huang Z., Shiva S., Kim-Shapiro D.B., Patel R.P., Ringwood L.A., Irby C.E., Huang K.T., Ho C., Hogg N., Schechter A.N., Gladwin M.T.
Hypoxic vasodilation is a fundamental, highly conserved physiological response that requires oxygen and/or pH sensing coupled to vasodilation. While this process was first characterized more than 80 years ago, the precise identity and mechanism of the oxygen sensor and mediators of vasodilation re ... >> More
Hypoxic vasodilation is a fundamental, highly conserved physiological response that requires oxygen and/or pH sensing coupled to vasodilation. While this process was first characterized more than 80 years ago, the precise identity and mechanism of the oxygen sensor and mediators of vasodilation remain uncertain. In support of a possible role for hemoglobin (Hb) as a sensor and effector of hypoxic vasodilation, here we show biochemical evidence that Hb exhibits enzymatic behavior as a nitrite reductase, with maximal NO generation rates occurring near the oxy-to-deoxy (R-to-T) allosteric structural transition of the protein. The observed rate of nitrite reduction by Hb deviates from second-order kinetics, and sigmoidal reaction progress is determined by a balance between 2 opposing chemistries of the heme in the R (oxygenated conformation) and T (deoxygenated conformation) allosteric quaternary structures of the Hb tetramer--the greater reductive potential of deoxyheme in the R state tetramer and the number of unligated deoxyheme sites necessary for nitrite binding, which are more plentiful in the T state tetramer. These opposing chemistries result in a maximal nitrite reduction rate when Hb is 40-60% saturated with oxygen (near the Hb P50), an apparent ideal set point for hypoxia-responsive NO generation. These data suggest that the oxygen sensor for hypoxic vasodilation is determined by Hb oxygen saturation and quaternary structure and that the nitrite reductase activity of Hb generates NO gas under allosteric and pH control. << Less