Enzymes
UniProtKB help_outline | 8 proteins |
Reaction participants Show >> << Hide
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-histidine Identifier CHEBI:57595 Charge 0 Formula C6H9N3O2 InChIKeyhelp_outline HNDVDQJCIGZPNO-YFKPBYRVSA-N SMILEShelp_outline [NH3+][C@@H](Cc1c[nH]cn1)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 36 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:76379 | RHEA:76380 | RHEA:76381 | RHEA:76382 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
Specific form(s) of this reaction
Publications
-
Cloning and functional expression of a brain peptide/histidine transporter.
Yamashita T., Shimada S., Guo W., Sato K., Kohmura E., Hayakawa T., Takagi T., Tohyama M.
Here we report the cloning and functional characterization of a rat novel peptide/histidine transporter (PHT1), which was expressed in the brain and the retina. The cDNA encodes the predicted protein of 572 amino acid residues with 12 putative membrane-spanning domains. The amino acid sequence has ... >> More
Here we report the cloning and functional characterization of a rat novel peptide/histidine transporter (PHT1), which was expressed in the brain and the retina. The cDNA encodes the predicted protein of 572 amino acid residues with 12 putative membrane-spanning domains. The amino acid sequence has moderate homology with a nonspecific peptide transporter found in the plant. When expressed in Xenopus laevis oocytes, PHT1 cRNA induced high affinity proton-dependent histidine transport activity. This transport process was inhibited by dipeptides and tripeptides but not by free amino acids such as glutamate, glycine, leucine, methionine, and aspartate. Dipeptide carnosine transport activity was also confirmed by direct uptake measurement. By in situ hybridization analysis, PHT1 mRNA was widely distributed throughout whole brain. Especially, intense hybridization signals were found in the hippocampus, choroid plexus, cerebellum, and pontine nucleus. Signals were located in both the neuronal and small nonneuronal cells in these areas. PHT1 protein could contribute to uptake of oligopeptides, which function as neuromodulators, and clearance of degraded neuropeptides and be a new member in the growing superfamily of proton-coupled peptide and nitrate transporters, although its structure, localization, and pharmacological characteristics are unique among these members. << Less
J. Biol. Chem. 272:10205-10211(1997) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
The functional evaluation of human peptide/histidine transporter 1 (hPHT1) in transiently transfected COS-7 cells.
Bhardwaj R.K., Herrera-Ruiz D., Eltoukhy N., Saad M., Knipp G.T.
Recently, the expression of the human peptide/histidine transporter (hPHT1, SLC15A4) mRNA was observed in the GI tract and in Caco-2 cells, suggesting that it may participate in the intestinal absorption of peptide-based agents. This study aims to elucidate the: (i) protein expression pattern of h ... >> More
Recently, the expression of the human peptide/histidine transporter (hPHT1, SLC15A4) mRNA was observed in the GI tract and in Caco-2 cells, suggesting that it may participate in the intestinal absorption of peptide-based agents. This study aims to elucidate the: (i) protein expression pattern of hPHT1 (SLC15A4) in human small intestine; (ii) cloning of the hPHT1 full-length sequence; (iii) functional characterization of hPHT1 in transiently transfected COS-7 cells. The expression of hPHT1 was measured using Western blot and immunohistochemical analysis. The hPHT1 full-sequence was amplified from BeWo cells, inserted into the pcDNA3.1-V5/His TOPO plasmid and transiently transfected into COS-7 cells to investigate the uptake kinetics of [3H]histidine and [3H]carnosine. Time, pH and sodium-dependent uptake studies were performed in mock (empty vector) and hPHT1-COS-7 cells. Results demonstrated hPHT1 protein expression in different intestinal regions. Histidine and carnosine uptake was linear in hPHT1-COS-7 cells over 15 min and was found to be pH-dependent. These substrates and valacyclovir showed significantly higher uptake at pH 5.0 in the hPHT1 transients when contrasted to the mock COS-7 cells, whereas glycylsarcosine uptake was significantly lower and unaffected by pH. Other di- and tripeptides also showed affinity for hPHT1. This study presents the initial functional characterization, the protein expression of the hPHT1 transporter and provides insight into a potentially different route for increasing peptide and peptide-based drug transport. << Less
Eur. J. Pharm. Sci. 27:533-542(2006) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
The histidine transporter SLC15A4 coordinates mTOR-dependent inflammatory responses and pathogenic antibody production.
Kobayashi T., Shimabukuro-Demoto S., Yoshida-Sugitani R., Furuyama-Tanaka K., Karyu H., Sugiura Y., Shimizu Y., Hosaka T., Goto M., Kato N., Okamura T., Suematsu M., Yokoyama S., Toyama-Sorimachi N.
SLC15A4 is a lysosome-resident, proton-coupled amino-acid transporter that moves histidine and oligopeptides from inside the lysosome to the cytosol of eukaryotic cells. SLC15A4 is required for Toll-like receptor 7 (TLR7)- and TLR9-mediated type I interferon (IFN-I) productions in plasmacytoid den ... >> More
SLC15A4 is a lysosome-resident, proton-coupled amino-acid transporter that moves histidine and oligopeptides from inside the lysosome to the cytosol of eukaryotic cells. SLC15A4 is required for Toll-like receptor 7 (TLR7)- and TLR9-mediated type I interferon (IFN-I) productions in plasmacytoid dendritic cells (pDCs) and is involved in the pathogenesis of certain diseases including lupus-like autoimmunity. How SLC15A4 contributes to diseases is largely unknown. Here we have shown that B cell SLC15A4 was crucial for TLR7-triggered IFN-I and autoantibody productions in a mouse lupus model. SLC15A4 loss disturbed the endolysosomal pH regulation and probably the v-ATPase integrity, and these changes were associated with disruption of the mTOR pathway, leading to failure of the IFN regulatory factor 7 (IRF7)-IFN-I regulatory circuit. Importantly, SLC15A4's transporter activity was necessary for the TLR-triggered cytokine production. Our findings revealed that SLC15A4-mediated optimization of the endolysosomal state is integral to a TLR7-triggered, mTOR-dependent IRF7-IFN-I circuit that leads to autoantibody production. << Less
Immunity 41:375-388(2014) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Functional characterization of human peptide/histidine transporter 1 in stably transfected MDCK Cells.
Song F., Hu Y., Wang Y., Smith D.E., Jiang H.
The proton-coupled oligopeptide transporter PHT1 (SLC15A4), which facilitates cross-membrane transport of histidine and small peptides from inside the endosomes or lysosomes to cytosol, plays an important role in intracellular peptides homeostasis and innate immune responses. However, it remains a ... >> More
The proton-coupled oligopeptide transporter PHT1 (SLC15A4), which facilitates cross-membrane transport of histidine and small peptides from inside the endosomes or lysosomes to cytosol, plays an important role in intracellular peptides homeostasis and innate immune responses. However, it remains a challenge to elucidate functional properties of the PHT1 transporter because of its subcellular localization. The purpose of this study was to resort hPHT1 protein from the subcellular to outer cell membrane of MDCK cells stably transfected with human PHT1 mutants, and to characterize its functional activity in these cells. Using this model, the functional activity of hPHT1 was evaluated by cellular uptake studies with d<sub>3</sub>-l-histidine, GlySar, and the bacterial peptidoglycan products MDP and Tri-DAP. We found that the disruption of two dileucine motifs was indispensable for hPHT1 transporter being preferentially targeting to plasma membranes. hPHT1 showed high affinity for d<sub>3</sub>-l-histidine and low affinity for GlySar, with K<sub>m</sub> values of 16.3 ± 1.9 μM and 1.60 ± 0.30 mM, respectively. Moreover, the bacterial peptidoglycan components MDP and Tri-DAP were shown conclusively to be hPHT1 substrates. The uptake of MDP by hPHT1 was inhibited by di/tripeptides and peptide-like drugs, but not by glycine and acyclovir. The functional activity of hPHT1 was also pH-dependent, with an optimal cellular uptake in buffer pH 6.5. Taken together, we established a novel cell model to evaluate the function of hPHT1 in vitro, and confirmed that MDP and Tri-DAP were substrates of hPHT1. Our findings suggest that PHT1 may serve as a potential target for reducing the immune responses and for drug treatment of inflammatory diseases. << Less
Mol. Pharm. 15:385-393(2018) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.
-
Substrate Transport Properties of the Human Peptide/Histidine Transporter PHT2 in Transfected MDCK Cells.
Wang Y., Li P., Song F., Yang X., Weng Y., Ma Z., Wang L., Jiang H.
PHT2, a member of the proton-coupled oligopeptide transporter family, participates in the transportation of small peptides and histidine from lysosomes to the cytosol. It facilitates maintenance of intracellular peptide homeostasis. However, it remains a challenge to elucidate the functional prope ... >> More
PHT2, a member of the proton-coupled oligopeptide transporter family, participates in the transportation of small peptides and histidine from lysosomes to the cytosol. It facilitates maintenance of intracellular peptide homeostasis. However, it remains a challenge to elucidate the functional properties of PHT2 due to its localization in the lysosomal membrane. The aim of this study was to explore the transport function and substrate properties of human PHT2 (hPHT2) by transfecting Madin-Darby canine kidney cells with hPHT2 mutants to obtain stably expressed protein in the cell membrane. Using this cell model, we found that the transport activity of hPHT2 reached a maximum capacity when the extracellular pH was 5.5. hPHT2 showed relatively low affinity for Gly-Sar and relatively high affinity for d<sub>3</sub>-L-histidine, with K<sub>m</sub> values of 428 ± 88 μM and 66.9 ± 5.7 μM, respectively. Several typical substrates or inhibitors of PEPT1 and PEPT2, including valacyclovir, Gly-Gly-Gly, and cefadroxil but not 5-aminolevulinic acid or captopril, were proven to be substrates of hPHT2. However, hPHT2 showed low affinity for valacyclovir with a K<sub>m</sub> value of 5350 ± 1234 μM. In conclusion, this study established a suitable and efficient cell model to explore the function of hPHT2 in vitro and provided important information on the transport activity and substrate properties of hPHT2. << Less
J. Pharm. Sci. 108:3416-3424(2019) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.