Reaction participants Show >> << Hide
- Name help_outline 9-cis-retinoate Identifier CHEBI:78630 Charge -1 Formula C20H27O2 InChIKeyhelp_outline SHGAZHPCJJPHSC-ZVCIMWCZSA-M SMILEShelp_outline C\C(\C=C\C1=C(C)CCCC1(C)C)=C\C=C\C(\C)=C\C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
reduced [NADPH—hemoprotein reductase]
Identifier
RHEA-COMP:11964
Reactive part
help_outline
- Name help_outline FMNH2 Identifier CHEBI:57618 (Beilstein: 6258176) help_outline Charge -2 Formula C17H21N4O9P InChIKeyhelp_outline YTNIXZGTHTVJBW-SCRDCRAPSA-L SMILEShelp_outline Cc1cc2Nc3c([nH]c(=O)[nH]c3=O)N(C[C@H](O)[C@H](O)[C@H](O)COP([O-])([O-])=O)c2cc1C 2D coordinates Mol file for the small molecule Search links Involved in 810 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,727 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 9-cis-4-hydroxyretinoate Identifier CHEBI:139253 Charge -1 Formula C20H27O3 InChIKeyhelp_outline KGUMXGDKXYTTEY-NAXRMXIQSA-M SMILEShelp_outline C1C(C(=C(C(C1)O)C)/C=C/C(=C\C=C\C(=C\C(=O)[O-])\C)/C)(C)C 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
oxidized [NADPH—hemoprotein reductase]
Identifier
RHEA-COMP:11965
Reactive part
help_outline
- Name help_outline FMN Identifier CHEBI:58210 Charge -3 Formula C17H18N4O9P InChIKeyhelp_outline ANKZYBDXHMZBDK-SCRDCRAPSA-K SMILEShelp_outline C12=NC([N-]C(C1=NC=3C(N2C[C@@H]([C@@H]([C@@H](COP(=O)([O-])[O-])O)O)O)=CC(=C(C3)C)C)=O)=O 2D coordinates Mol file for the small molecule Search links Involved in 820 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:75847 | RHEA:75848 | RHEA:75849 | RHEA:75850 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
A novel human cytochrome P450, CYP26C1, involved in metabolism of 9-cis and all-trans isomers of retinoic acid.
Taimi M., Helvig C., Wisniewski J., Ramshaw H., White J., Amad M., Korczak B., Petkovich M.
Retinoids are potent regulators of cell proliferation, cell differentiation, and morphogenesis and are important therapeutic agents in oncology and dermatology. The gene regulatory activity of endogenous retinoids is effected primarily by retinoic acid isomers (all-trans and 9-cis) that are synthe ... >> More
Retinoids are potent regulators of cell proliferation, cell differentiation, and morphogenesis and are important therapeutic agents in oncology and dermatology. The gene regulatory activity of endogenous retinoids is effected primarily by retinoic acid isomers (all-trans and 9-cis) that are synthesized from retinaldehyde precursors in a broad range of tissues and act as ligands for nuclear retinoic acid receptors. The catabolism of all-trans-retinoic acid (atRA) is an important mechanism of controlling RA levels in cell and tissues. We have previously identified two cytochrome P450s, P450RAI-1 and P450RAI-2 (herein named CYP26A1 and CYP26B1), which were shown to be responsible for catabolism of atRA both in the embryo and the adult. In this report, we describe the identification, molecular cloning, and substrate characterization of a third member of the CYP26 family, named CYP26C1. Transiently transfected cells expressing CYP26C1 convert atRA to polar water-soluble metabolites similar to those generated by CYP26A1 and -B1. Competition studies with all-trans, 13-cis, and 9-cis isomers of retinoic acid demonstrated that atRA was the preferred substrate for CYP26C1. Although CYP26C1 shares extensive sequence similarity with CYP26A1 and CYP26B1, its catalytic activity appears distinct from those of other CYP26 family members. Specifically, CYP26C1 can also recognize and metabolize 9-cis-RA and is much less sensitive than the other CYP26 family members to the inhibitory effects of ketoconazole. CYP26C1 is not widely expressed in the adult but is inducible by RA in HPK1a, transformed human keratinocyte cell lines. This third CYP26 member may play a specific role in catabolizing both all-trans and 9-cis isomers of RA. << Less
J. Biol. Chem. 279:77-85(2004) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.