Enzymes
UniProtKB help_outline | 2 proteins |
Reaction participants Show >> << Hide
- Name help_outline D-mannose Identifier CHEBI:4208 (CAS: 31103-86-3,530-26-7,3458-28-4) help_outline Charge 0 Formula C6H12O6 InChIKeyhelp_outline WQZGKKKJIJFFOK-QTVWNMPRSA-N SMILEShelp_outline OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 31 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline Na+ Identifier CHEBI:29101 (CAS: 17341-25-2) help_outline Charge 1 Formula Na InChIKeyhelp_outline FKNQFGJONOIPTF-UHFFFAOYSA-N SMILEShelp_outline [Na+] 2D coordinates Mol file for the small molecule Search links Involved in 259 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:75475 | RHEA:75476 | RHEA:75477 | RHEA:75478 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
Specific form(s) of this reaction
Publications
-
SLC5A9/SGLT4, a new Na+-dependent glucose transporter, is an essential transporter for mannose, 1,5-anhydro-D-glucitol, and fructose.
Tazawa S., Yamato T., Fujikura H., Hiratochi M., Itoh F., Tomae M., Takemura Y., Maruyama H., Sugiyama T., Wakamatsu A., Isogai T., Isaji M.
We isolated a cDNA clone of SLC5A9/SGLT4 from human small intestinal full-length cDNA libraries, and functionally characterized it in vitro. The messenger RNA encoding SGLT4 was mainly expressed in the small intestine and kidney, among the human tissues tested. COS-7 cells transiently expressing S ... >> More
We isolated a cDNA clone of SLC5A9/SGLT4 from human small intestinal full-length cDNA libraries, and functionally characterized it in vitro. The messenger RNA encoding SGLT4 was mainly expressed in the small intestine and kidney, among the human tissues tested. COS-7 cells transiently expressing SGLT4 exhibited Na(+)-dependent alpha-methyl-D-glucopyranoside (AMG) transport activity with an apparent K(m) of 2.6 mM, suggesting that SGLT4 is a low affinity-type transporter. The rank order of naturally occurring sugar analogs for the inhibition of AMG transport was: D-mannose (Man) >> D-glucose (Glc) > D-fructose (Fru) = 1,5-anhydro-D-glucitol (1,5AG) > D-galactose (Gal). Recognition of Man as a substrate was confirmed by direct uptake of Man into the cell. COS-7 cells expressing a putative murine SGLT4 ortholog showed similar Na(+)-dependent AMG transport activity and a similar deduced substrate specificity. These results suggest that SGLT4 would have unique physiological functions (i.e., absorption and/or reabsorption of Man, 1,5AG, and Fru, in addition to Glc). << Less