Enzymes
UniProtKB help_outline | 1,251 proteins |
Reaction participants Show >> << Hide
- Name help_outline serotonin Identifier CHEBI:350546 Charge 1 Formula C10H13N2O InChIKeyhelp_outline QZAYGJVTTNCVMB-UHFFFAOYSA-O SMILEShelp_outline [NH3+]CCc1c[nH]c2ccc(O)cc12 2D coordinates Mol file for the small molecule Search links Involved in 17 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:73867 | RHEA:73868 | RHEA:73869 | RHEA:73870 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
Reactome help_outline |
Publications
-
Facilitated mitochondrial import of antiviral and anticancer nucleoside drugs by human equilibrative nucleoside transporter-3.
Govindarajan R., Leung G.P., Zhou M., Tse C.M., Wang J., Unadkat J.D.
Human equilibrative nucleoside transporter-3 (hENT3) was recently reported as a pH-dependent, intracellular (lysosomal) transporter capable of transporting anti-human immunodeficiency virus (HIV) dideoxynucleosides (ddNs). Because most anti-HIV ddNs (e.g., zidovudine, AZT) exhibit clinical mitocho ... >> More
Human equilibrative nucleoside transporter-3 (hENT3) was recently reported as a pH-dependent, intracellular (lysosomal) transporter capable of transporting anti-human immunodeficiency virus (HIV) dideoxynucleosides (ddNs). Because most anti-HIV ddNs (e.g., zidovudine, AZT) exhibit clinical mitochondrial toxicity, we investigated whether hENT3 facilitates transport of anti-HIV ddNs into the mitochondria. Cellular fractionation and immunofluorescence microscopy studies in several human cell lines identified a substantial presence of hENT3 in the mitochondria, with additional presence at the cell surface of two placental cell lines (JAR, JEG3). Mitochondrial or cell surface hENT3 expression was confirmed in human hepatocytes and placental tissues, respectively. Unlike endogenous hENT3, yellow fluorescent protein (YFP)-tagged hENT3 was partially directed to the lysosomes. Xenopus oocytes expressing NH2-terminal-deleted hENT3 (expressed at the cell surface) showed pH-dependent interaction with several classes of nucleosides (anti-HIV ddNs, gemcitabine, fialuridine, ribavirin) that produce mitochondrial toxicity. Transport studies in hENT3 gene-silenced JAR cells showed significant reduction in mitochondrial transport of nucleosides and nucleoside drugs. Our data suggest that cellular localization of hENT3 is cell type dependent and the native transporter is substantially expressed in mitochondria and/or cell surface. hENT3-mediated mitochondrial transport may play an important role in mediating clinically observed mitochondrial toxicity of nucleoside drugs. In addition, our finding that hENT3 is a mitochondrial transporter is consistent with the recent finding that mutations in the hENT3 gene cause an autosomal recessive disorder in humans called the H syndrome. << Less
Am. J. Physiol. 296:G910-G922(2009) [PubMed] [EuropePMC]
This publication is cited by 12 other entries.
-
Differential pharmacological in vitro properties of organic cation transporters and regional distribution in rat brain.
Amphoux A., Vialou V., Drescher E., Bruess M., Mannoury La Cour C., Rochat C., Millan M.J., Giros B., Boenisch H., Gautron S.
Organic cation transporters (OCTs) are polyspecific carriers implicated in low-affinity, corticosteroid-sensitive extraneuronal catecholamine uptake in peripheral tissues. The three main OCT subtypes, OCT1, OCT2 and OCT3, are also present in the brain, but their central role remains unclear. In th ... >> More
Organic cation transporters (OCTs) are polyspecific carriers implicated in low-affinity, corticosteroid-sensitive extraneuronal catecholamine uptake in peripheral tissues. The three main OCT subtypes, OCT1, OCT2 and OCT3, are also present in the brain, but their central role remains unclear. In the present study, we investigated by comparative in situ hybridization analysis the regional distribution of these transporters in rat brain and compared their functional properties in stably transfected HEK293 cells expressing human or rat OCTs. In rat brain, OCT2 and OCT3 mRNAs are expressed predominantly in regions located at the brain-cerebrospinal fluid border, with OCT3 mRNA expression extending to regions that belong to monoaminergic pathways such as raphe nuclei, striatum and thalamus. After normalization with MPP+ uptake, OCT2 and OCT3 subtypes share a similar monoamine preference profile, with higher transport efficacies for epinephrine and histamine than for the other monoamines. Interestingly, a significant level of epinephrine transport, previously only shown for rOCT2, is achieved by most OCTs subtypes. Finally, another novel finding was that OCTs are sensitive to 3,4-methylenedioxymetamphetamine (MDMA), phencyclidine (PCP), MK-801 and ketamine. Altogether, all our results suggest a functional specialization of OCT subtypes, based both on their intrinsic properties and their differential regional expression pattern in the brain. << Less
Neuropharmacology 50:941-952(2006) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
-
Distribution and functional characterization of equilibrative nucleoside transporter-4, a novel cardiac adenosine transporter activated at acidic pH.
Barnes K., Dobrzynski H., Foppolo S., Beal P.R., Ismat F., Scullion E.R., Sun L., Tellez J., Ritzel M.W., Claycomb W.C., Cass C.E., Young J.D., Billeter-Clark R., Boyett M.R., Baldwin S.A.
Adenosine plays multiple roles in the efficient functioning of the heart by regulating coronary blood flow, cardiac pacemaking, and contractility. Previous studies have implicated the equilibrative nucleoside transporter family member equilibrative nucleoside transporter-1 (ENT1) in the regulation ... >> More
Adenosine plays multiple roles in the efficient functioning of the heart by regulating coronary blood flow, cardiac pacemaking, and contractility. Previous studies have implicated the equilibrative nucleoside transporter family member equilibrative nucleoside transporter-1 (ENT1) in the regulation of cardiac adenosine levels. We report here that a second member of this family, ENT4, is also abundant in the heart, in particular in the plasma membranes of ventricular myocytes and vascular endothelial cells but, unlike ENT1, is virtually absent from the sinoatrial and atrioventricular nodes. Originally described as a monoamine/organic cation transporter, we found that both human and mouse ENT4 exhibited a novel, pH-dependent adenosine transport activity optimal at acidic pH (apparent K(m) values 0.78 and 0.13 mmol/L, respectively, at pH 5.5) and absent at pH 7.4. In contrast, serotonin transport by ENT4 was relatively insensitive to pH. ENT4-mediated nucleoside transport was adenosine selective, sodium independent and only weakly inhibited by the classical inhibitors of equilibrative nucleoside transport, dipyridamole, dilazep, and nitrobenzylthioinosine. We hypothesize that ENT4, in addition to playing roles in cardiac serotonin transport, contributes to the regulation of extracellular adenosine concentrations, in particular under the acidotic conditions associated with ischemia. << Less
Circ. Res. 99:510-519(2006) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.