Reaction participants Show >> << Hide
- Name help_outline an α-Kdo-(2→8)-α-Kdo-(2→4)-α-Kdo-(2→6)-lipid IVA Identifier CHEBI:192708 Charge -7 Formula C48H67N2O44P2R4 SMILEShelp_outline [C@H]1(OP([O-])([O-])=O)[C@H](OC(=O)C[C@@H](*)O)[C@@H](NC(=O)C[C@@H](*)O)[C@@H](O[C@@H]1CO[C@@]2(C(=O)[O-])O[C@@H]([C@H](O)[C@@H](C2)O[C@@]3(C(=O)[O-])O[C@@H]([C@H](O)[C@@H](C3)O)[C@@H](CO[C@]4(O[C@@H]([C@H](O)[C@@H](C4)O)[C@@H](CO)O)C(=O)[O-])O)[C@@H](CO)O)OC[C@@H]5[C@H]([C@@H]([C@H]([C@H](O5)OP(=O)([O-])[O-])NC(=O)C[C@@H](*)O)OC(=O)C[C@@H](*)O)O 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CMP-3-deoxy-β-D-manno-octulosonate Identifier CHEBI:85987 Charge -2 Formula C17H24N3O15P InChIKeyhelp_outline YWWJKULNWGRYAS-UOVSKDHASA-L SMILEShelp_outline Nc1ccn([C@@H]2O[C@H](COP([O-])(=O)O[C@]3(C[C@@H](O)[C@@H](O)[C@H](O3)[C@H](O)CO)C([O-])=O)[C@@H](O)[C@H]2O)c(=O)n1 2D coordinates Mol file for the small molecule Search links Involved in 11 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline an α-Kdo-(2→8)-[α-Kdo-(2→4)]-α-Kdo-(2→4)-α-Kdo-(2→6)-lipid IVA Identifier CHEBI:193024 Charge -8 Formula C56H78N2O51P2R4 SMILEShelp_outline [C@H]1(OP([O-])([O-])=O)[C@H](OC(=O)C[C@@H](*)O)[C@@H](NC(=O)C[C@@H](*)O)[C@@H](O[C@@H]1CO[C@@]2(C(=O)[O-])O[C@@]([C@H](O)[C@@H](C2)O[C@@]3(C(=O)[O-])O[C@@]([C@H](O)[C@@H](C3)O[C@@]4(C(=O)[O-])O[C@@]([C@H](O)[C@@H](C4)O)([C@@H](CO)O)[H])([C@@H](CO[C@]5(O[C@@]([C@H](O)[C@@H](C5)O)([C@@H](CO)O)[H])C(=O)[O-])O)[H])([C@@H](CO)O)[H])OC[C@@H]6[C@H]([C@@H]([C@H]([C@H](O6)OP(=O)([O-])[O-])NC(=O)C[C@@H](*)O)OC(=O)C[C@@H](*)O)O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CMP Identifier CHEBI:60377 Charge -2 Formula C9H12N3O8P InChIKeyhelp_outline IERHLVCPSMICTF-XVFCMESISA-L SMILEShelp_outline Nc1ccn([C@@H]2O[C@H](COP([O-])([O-])=O)[C@@H](O)[C@H]2O)c(=O)n1 2D coordinates Mol file for the small molecule Search links Involved in 166 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:73827 | RHEA:73828 | RHEA:73829 | RHEA:73830 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline |
Related reactions help_outline
Specific form(s) of this reaction
Publications
-
The structures of oligosaccharide bisphosphates isolated from the lipopolysaccharide of a recombinant Escherichia coli strain expressing the gene gseA [3-deoxy-D-manno-octulopyranosonic acid (Kdo) transferase] of Chlamydia psittaci 6BC.
Holst O., Bock K., Brade L., Brade H.
The lipopolysaccharide from the recombinant strain Escherichia coli F515-140 containing the cloned gene gseA [3-deoxy-D-manno-octulopyranosonic acid (Kdo) transferase] from Chlamydia psittaci 6BC was isolated and sequentially de-O-acylated and de-N-acylated. The products were separated by high-per ... >> More
The lipopolysaccharide from the recombinant strain Escherichia coli F515-140 containing the cloned gene gseA [3-deoxy-D-manno-octulopyranosonic acid (Kdo) transferase] from Chlamydia psittaci 6BC was isolated and sequentially de-O-acylated and de-N-acylated. The products were separated by high-performance anion-exchange chromatography into three fractions, two of which contained a single compound. Their structures were elucidated by high-field NMR spectroscopy as alpha-Kdo-(2-->4)-alpha-Kdo-(2-->6)-beta-D-GlcN-(1-->6)-alpha-D-GlcN 1,4'-P2 (compound 1) (tetrasaccharide bisphosphate) [Holst, O., Broer, W., Thomas-Oates, J. E., Mamat, U. & Brade, H. (1993) Eur. J. Biochem. 214, 703-710] and alpha-Kdo-(2-->4)-[alpha-Kdo-(2-->8)-]-alpha-Kdo-(2-->4)-alpha-Kdo-(2-->6)-beta-D-GlcN-(1-->6)-alpha-D-GlcN 1,4'-P2 (compound 4) (hexasaccharide bisphosphate). The third fraction comprised two pentasaccharide bisphosphates, which could be separated by affinity chromatography using an immobilized monoclonal antibody specific for the trisaccharide alpha-Kdo-(2-->8)-alpha-Kdo-(2-->4)-alpha-Kdo. The bound fraction was identified as alpha-Kdo-(2-->8)-alpha-Kdo-(2-->4)-alpha-Kdo-(2-->6)-beta-D-GlcN-(1-->6)-alpha-D-GlcN 1,4'-P2 (compound 2) [Holst, O., Broer, W., Thomas-Oates, J. E., Mamat, U. & Brade, H. (1993) Eur. J. Biochem. 214, 703-710], whereas the unbound fraction was identified as alpha-Kdo-(2-->4)-alpha-Kdo-(2-->4)-alpha-Kdo-(2-->6)-beta-D-GlcN-(1-->6 )-alpha-D-GlcN 1,4'-P2 (compound 3). This novel Kdo tetrasaccharide extends our knowledge on multifunctional Kdo transferases. << Less
Eur. J. Biochem. 229:194-200(1995) [PubMed] [EuropePMC]
This publication is cited by 7 other entries.
-
Comparative analyses of secondary gene products of 3-deoxy-D-manno-oct-2-ulosonic acid transferases from Chlamydiaceae in Escherichia coli K-12.
Brabetz W., Lindner B., Brade H.
The waaA gene encoding the essential, lipopolysaccharide (LPS)-specific 3-deoxy-Dmanno-oct-2-ulosonic acid (Kdo) transferase was inactivated in the chromosome of a heptosyltransferase I and II deficient Escherichia coli K-12 strain by insertion of gene expression cassettes encoding the waaA genes ... >> More
The waaA gene encoding the essential, lipopolysaccharide (LPS)-specific 3-deoxy-Dmanno-oct-2-ulosonic acid (Kdo) transferase was inactivated in the chromosome of a heptosyltransferase I and II deficient Escherichia coli K-12 strain by insertion of gene expression cassettes encoding the waaA genes of Chlamydia trachomatis, Chlamydophila pneumoniae or Chlamydophila psittaci. The three chlamydial Kdo transferases were able to complement the knockout mutation without changing the growth or multiplication behaviour. The LPS of the mutants were serologically and structurally characterized in comparison to the LPS of the parent strain using compositional analyses, high performance anion exchange chromatography, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and specific monoclonal antibodies. The data show that chlamydial Kdo transferases can replace in E. coli K-12 the host's Kdo transferase and retain the product specificities described in their natural background. In addition, we unequivocally proved that WaaA from C. psittaci transfers predominantly four Kdo residues to lipid A, forming a branched tetrasaccharide with the structure alpha-Kdo-(2-->8)-[alpha-Kdo-(2-->4)]-alpha-Kdo-(2-->4)-alpha-Kdo. << Less
Eur. J. Biochem. 267:5458-5465(2000) [PubMed] [EuropePMC]
This publication is cited by 9 other entries.