Enzymes
UniProtKB help_outline | 3 proteins |
Reaction participants Show >> << Hide
- Name help_outline Ni2+ Identifier CHEBI:49786 (CAS: 14701-22-5) help_outline Charge 2 Formula Ni InChIKeyhelp_outline VEQPNABPJHWNSG-UHFFFAOYSA-N SMILEShelp_outline [Ni++] 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:73039 | RHEA:73040 | RHEA:73041 | RHEA:73042 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Publications
-
Substrate profile and metal-ion selectivity of human divalent metal-ion transporter-1.
Illing A.C., Shawki A., Cunningham C.L., Mackenzie B.
Divalent metal-ion transporter-1 (DMT1) is a H(+)-coupled metal-ion transporter that plays essential roles in iron homeostasis. DMT1 exhibits reactivity (based on evoked currents) with a broad range of metal ions; however, direct measurement of transport is lacking for many of its potential substr ... >> More
Divalent metal-ion transporter-1 (DMT1) is a H(+)-coupled metal-ion transporter that plays essential roles in iron homeostasis. DMT1 exhibits reactivity (based on evoked currents) with a broad range of metal ions; however, direct measurement of transport is lacking for many of its potential substrates. We performed a comprehensive substrate-profile analysis for human DMT1 expressed in RNA-injected Xenopus oocytes by using radiotracer assays and the continuous measurement of transport by fluorescence with the metal-sensitive PhenGreen SK fluorophore. We provide validation for the use of PhenGreen SK fluorescence quenching as a reporter of cellular metal-ion uptake. We determined metal-ion selectivity under fixed conditions using the voltage clamp. Radiotracer and continuous measurement of transport by fluorescence assays revealed that DMT1 mediates the transport of several metal ions that were ranked in selectivity by using the ratio I(max)/K(0.5) (determined from evoked currents at -70 mV): Cd(2+) > Fe(2+) > Co(2+), Mn(2+) ≫ Zn(2+), Ni(2+), VO(2+). DMT1 expression did not stimulate the transport of Cr(2+), Cr(3+), Cu(+), Cu(2+), Fe(3+), Ga(3+), Hg(2+), or VO(+). (55)Fe(2+) transport was competitively inhibited by Co(2+) and Mn(2+). Zn(2+) only weakly inhibited (55)Fe(2+) transport. Our data reveal that DMT1 selects Fe(2+) over its other physiological substrates and provides a basis for predicting the contribution of DMT1 to intestinal, nasal, and pulmonary absorption of metal ions and their cellular uptake in other tissues. Whereas DMT1 is a likely route of entry for the toxic heavy metal cadmium, and may serve the metabolism of cobalt, manganese, and vanadium, we predict that DMT1 should contribute little if at all to the absorption or uptake of zinc. The conclusion in previous reports that copper is a substrate of DMT1 is not supported. << Less
J. Biol. Chem. 287:30485-30496(2012) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.
-
Cloning and characterization of a mammalian proton-coupled metal-ion transporter.
Gunshin H., Mackenzie B., Berger U.V., Gunshin Y., Romero M.F., Boron W.F., Nussberger S., Gollan J.L., Hediger M.A.
Metal ions are essential cofactors for a wealth of biological processes, including oxidative phosphorylation, gene regulation and free-radical homeostasis. Failure to maintain appropriate levels of metal ions in humans is a feature of hereditary haemochromatosis, disorders of metal-ion deficiency, ... >> More
Metal ions are essential cofactors for a wealth of biological processes, including oxidative phosphorylation, gene regulation and free-radical homeostasis. Failure to maintain appropriate levels of metal ions in humans is a feature of hereditary haemochromatosis, disorders of metal-ion deficiency, and certain neurodegenerative diseases. Despite their pivotal physiological roles, however, there is no molecular information on how metal ions are actively absorbed by mammalian cells. We have now identified a new metal-ion transporter in the rat, DCT1, which has an unusually broad substrate range that includes Fe2+, Zn2+, Mn2+, Co2+, Cd2+, Cu2+, Ni2+ and Pb2+. DCT1 mediates active transport that is proton-coupled and depends on the cell membrane potential. It is a 561-amino-acid protein with 12 putative membrane-spanning domains and is ubiquitously expressed, most notably in the proximal duodenum. DCT1 is upregulated by dietary iron deficiency, and may represent a key mediator of intestinal iron absorption. DCT1 is a member of the 'natural-resistance-associated macrophage protein' (Nramp) family and thus its properties provide insight into how these proteins confer resistance to pathogens. << Less
Nature 388:482-488(1997) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.