Enzymes
UniProtKB help_outline | 235 proteins |
Reaction participants Show >> << Hide
- Name help_outline acetoacetate Identifier CHEBI:13705 (CAS: 141-81-1) help_outline Charge -1 Formula C4H5O3 InChIKeyhelp_outline WDJHALXBUFZDSR-UHFFFAOYSA-M SMILEShelp_outline CC(=O)CC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 23 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline Na+ Identifier CHEBI:29101 (CAS: 17341-25-2) help_outline Charge 1 Formula Na InChIKeyhelp_outline FKNQFGJONOIPTF-UHFFFAOYSA-N SMILEShelp_outline [Na+] 2D coordinates Mol file for the small molecule Search links Involved in 259 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:72963 | RHEA:72964 | RHEA:72965 | RHEA:72966 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Publications
-
Identity of SMCT1 (SLC5A8) as a neuron-specific Na+-coupled transporter for active uptake of L-lactate and ketone bodies in the brain.
Martin P.M., Gopal E., Ananth S., Zhuang L., Itagaki S., Prasad B.M., Smith S.B., Prasad P.D., Ganapathy V.
SMCT1 is a sodium-coupled (Na(+)-coupled) transporter for l-lactate and short-chain fatty acids. Here, we show that the ketone bodies, beta-d-hydroxybutyrate and acetoacetate, and the branched-chain ketoacid, alpha-ketoisocaproate, are also substrates for the transporter. The transport of these co ... >> More
SMCT1 is a sodium-coupled (Na(+)-coupled) transporter for l-lactate and short-chain fatty acids. Here, we show that the ketone bodies, beta-d-hydroxybutyrate and acetoacetate, and the branched-chain ketoacid, alpha-ketoisocaproate, are also substrates for the transporter. The transport of these compounds via human SMCT1 is Na(+)-coupled and electrogenic. The Michaelis constant is 1.4 +/-0.1 mm for beta-d-hydroxybutyrate, 0.21 +/-0.04 mm for acetoacetate and 0.21 +/-0.03 mm for alpha-ketoisocaproate. The Na(+) : substrate stoichiometry is 2 : 1. As l-lactate and ketone bodies constitute primary energy substrates for neurons, we investigated the expression pattern of this transporter in the brain. In situ hybridization studies demonstrate widespread expression of SMCT1 mRNA in mouse brain. Immunofluorescence analysis shows that SMCT1 protein is expressed exclusively in neurons. SMCT1 protein co-localizes with MCT2, a neuron-specific Na(+)-independent monocarboxylate transporter. In contrast, there was no overlap of signals for SMCT1 and MCT1, the latter being expressed only in non-neuronal cells. We also demonstrate the neuron-specific expression of SMCT1 in mixed cultures of rat cortical neurons and astrocytes. This represents the first report of an Na(+)-coupled transport system for a major group of energy substrates in neurons. These findings suggest that SMCT1 may play a critical role in the entry of l-lactate and ketone bodies into neurons by a process driven by an electrochemical Na(+) gradient and hence, contribute to the maintenance of the energy status and function of neurons. << Less
J. Neurochem. 98:279-288(2006) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Zebrafish Slc5a12 encodes an electroneutral sodium monocarboxylate transporter (SMCTn). A comparison with the electrogenic SMCT (SMCTe/Slc5a8).
Plata C., Sussman C.R., Sindic A., Liang J.O., Mount D.B., Josephs Z.M., Chang M.-H., Romero M.F.
We have identified and characterized two different sodium-coupled monocarboxylate cotransporters (SMCT) from zebrafish (Danio rerio), electrogenic (zSMCTe) and electroneutral (zSMCTn). zSMCTn is the 12th member of the zebrafish Slc5 gene family (zSlc5a12). Both zSMCT sequences have approximately 5 ... >> More
We have identified and characterized two different sodium-coupled monocarboxylate cotransporters (SMCT) from zebrafish (Danio rerio), electrogenic (zSMCTe) and electroneutral (zSMCTn). zSMCTn is the 12th member of the zebrafish Slc5 gene family (zSlc5a12). Both zSMCT sequences have approximately 50% homology to human SLC5A8 (hSMCT). Transport function and kinetics were measured in Xenopus oocytes injected with zSMCT cRNAs by measurement of intracellular Na(+) concentration ([Na(+)](i)) and membrane potential. Both zSMCTs oocytes increased [Na(+)](i) with addition of monocarboxylates (MC) such as lactate, pyruvate, nicotinate, and butyrate. By using two electrode voltage clamp experiments, we measured currents elicited from zSMCTe after MC addition. MC-elicited currents from zSMCTe were similar to hSMCT currents. In contrast, we found no significant MC-elicited current in either zSMCTn or control oocytes. Kinetic data show that zSMCTe has a higher affinity for lactate, nicotinate, and pyruvate (K(m)(L-lactate) = 0.17 +/- 0.02 mM, K(m)(nicotinate) = 0.54 +/-0.12 mM at -150 mV) than zSMCTn (K(m)(L-lactate) = 1.81 +/-0.19 mM, K(m)(nicotinate) = 23.68 +/-4.88 mM). In situ hybridization showed that 1-, 3-, and 5-day-old zebrafish embryos abundantly express both zSMCTs in the brain, eyes, intestine, and kidney. Within the kidney, zSMCTn mRNA is expressed in pronephric tubules, whereas zSMCTe mRNA is more distal in pronephric ducts. zSMCTn is expressed in exocrine pancreas, but zSMCTe is not. Roles for Na(+)-coupled monocarboxylate cotransporters have not been described for the brain or eye. In summary, zSMCTe is the zebrafish SLC5A8 ortholog, and zSMCTn is a novel, electroneutral SMCT (zSlc5a12). Slc5a12 in higher vertebrates is likely responsible for the electroneutral Na(+)/lactate cotransport reported in mammalian and amphibian kidneys. << Less
J. Biol. Chem. 282:11996-12009(2007) [PubMed] [EuropePMC]
This publication is cited by 11 other entries.