Reaction participants Show >> << Hide
- Name help_outline (22E)-3-oxochola-4,22-dien-24-oyl-CoA Identifier CHEBI:136759 Charge -4 Formula C45H64N7O18P3S InChIKeyhelp_outline KECDKXTVBMMQTC-FZQSAGNESA-J SMILEShelp_outline C(/C=C/[C@]([C@@]1([C@]2(CC[C@@]3([C@]4(CCC(C=C4CC[C@]3([C@@]2(CC1)[H])[H])=O)C)[H])C)[H])(C)[H])(=O)SCCNC(CCNC(=O)[C@@H](C(COP(OP(OC[C@H]5O[C@@H](N6C7=C(C(=NC=N7)N)N=C6)[C@@H]([C@@H]5OP([O-])([O-])=O)O)(=O)[O-])(=O)[O-])(C)C)O)=O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (22S)-hydroxy-3-oxo-chol-4-ene-24-oyl-CoA Identifier CHEBI:192468 Charge -4 Formula C45H66N7O19P3S InChIKeyhelp_outline PWKWOPLMMQRHSP-OQNOLXRFSA-J SMILEShelp_outline C(C[C@@H]([C@]([C@@]1([C@]2(CC[C@@]3([C@]4(CCC(C=C4CC[C@]3([C@@]2(CC1)[H])[H])=O)C)[H])C)[H])(C)[H])O)(=O)SCCNC(CCNC(=O)[C@@H](C(COP(OP(OC[C@H]5O[C@@H](N6C7=C(C(=NC=N7)N)N=C6)[C@@H]([C@@H]5OP([O-])([O-])=O)O)(=O)[O-])(=O)[O-])(C)C)O)=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:72579 | RHEA:72580 | RHEA:72581 | RHEA:72582 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Enzymatic beta-Oxidation of the Cholesterol Side Chain in Mycobacterium tuberculosis Bifurcates Stereospecifically at Hydration of 3-Oxo-cholest-4,22-dien-24-oyl-CoA.
Yuan T., Werman J.M., Yin X., Yang M., Garcia-Diaz M., Sampson N.S.
The unique ability of <i>Mycobacterium tuberculosis</i> (Mtb) to utilize host lipids such as cholesterol for survival, persistence, and virulence has made the metabolic pathway of cholesterol an area of great interest for therapeutics development. Herein, we identify and characterize two genes fro ... >> More
The unique ability of <i>Mycobacterium tuberculosis</i> (Mtb) to utilize host lipids such as cholesterol for survival, persistence, and virulence has made the metabolic pathway of cholesterol an area of great interest for therapeutics development. Herein, we identify and characterize two genes from the Cho-region (genomic locus responsible for cholesterol catabolism) of the Mtb genome, <i>chsH3</i> (Rv3538) and <i>chsB1</i> (Rv3502c). Their protein products catalyze two sequential stereospecific hydration and dehydrogenation steps in the β-oxidation of the cholesterol side chain. ChsH3 favors the 22<i>S</i> hydration of 3-oxo-cholest-4,22-dien-24-oyl-CoA in contrast to the previously reported EchA19 (Rv3516), which catalyzes formation of the (22<i>R</i>)-hydroxy-3-oxo-cholest-4-en-24-oyl-CoA from the same enoyl-CoA substrate. ChsB1 is stereospecific and catalyzes dehydrogenation of the ChsH3 product but not the EchA19 product. The X-ray crystallographic structure of the ChsB1 apo-protein was determined at a resolution of 2.03 Å, and the holo-enzyme with bound NAD<sup>+</sup> cofactor was determined at a resolution of 2.21 Å. The homodimeric structure is representative of a classical NAD<sup>+</sup>-utilizing short-chain type alcohol dehydrogenase/reductase, including a Rossmann-fold motif, but exhibits a unique substrate binding site architecture that is of greater length and width than its homologous counterparts, likely to accommodate the bulky steroid substrate. Intriguingly, Mtb utilizes hydratases from the MaoC-like family in sterol side-chain catabolism in contrast to fatty acid β-oxidation in other species that utilize the evolutionarily distinct crotonase family of hydratases. << Less
ACS Infect. Dis. 7:1739-1751(2021) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.