Reaction participants Show >> << Hide
- Name help_outline L-leucyl-L-leucine Identifier CHEBI:191208 Charge 0 Formula C12H24N2O3 InChIKeyhelp_outline LCPYQJIKPJDLLB-UWVGGRQHSA-N SMILEShelp_outline CC(C)C[C@H]([NH3+])C(=O)N[C@@H](CC(C)C)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:71715 | RHEA:71716 | RHEA:71717 | RHEA:71718 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Expression cloning of a mammalian proton-coupled oligopeptide transporter.
Fei Y.-J., Kanai Y., Nussberger S., Ganapathy V., Leibach F.H., Romero M.F., Singh S.K., Boron W.F., Hediger M.A.
In mammals, active transport of organic solutes across plasma membranes was thought to be primarily driven by the Na+ gradient. Here we report the cloning and functional characterization of a H(+)-coupled transporter of oligopeptides and peptide-derived antibiotics from rabbit small intestine. Thi ... >> More
In mammals, active transport of organic solutes across plasma membranes was thought to be primarily driven by the Na+ gradient. Here we report the cloning and functional characterization of a H(+)-coupled transporter of oligopeptides and peptide-derived antibiotics from rabbit small intestine. This new protein, named PepT1, displays an unusually broad substrate specificity. PepT1-mediated uptake is electrogenic, independent of extracellular Na+, K+ and Cl-, and of membrane potential. PepT1 messenger RNA was found in intestine, kidney and liver and in small amounts in brain. In the intestine, the PepT1 pathway constitutes a major mechanism for absorption of the products of protein digestion. To our knowledge, the PepT1 primary structure is the first reported for a proton-coupled organic solute transporter in vertebrates and represents an interesting evolutionary link between prokaryotic H(+)-coupled and vertebrate Na(+)-coupled transporters of organic solutes. << Less
Nature 368:563-566(1994) [PubMed] [EuropePMC]
This publication is cited by 10 other entries.