Enzymes
UniProtKB help_outline | 2 proteins |
Reaction participants Show >> << Hide
- Name help_outline L-lysine Identifier CHEBI:32551 Charge 1 Formula C6H15N2O2 InChIKeyhelp_outline KDXKERNSBIXSRK-YFKPBYRVSA-O SMILEShelp_outline [NH3+]CCCC[C@H]([NH3+])C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 67 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline chloride Identifier CHEBI:17996 (Beilstein: 3587171; CAS: 16887-00-6) help_outline Charge -1 Formula Cl InChIKeyhelp_outline VEXZGXHMUGYJMC-UHFFFAOYSA-M SMILEShelp_outline [Cl-] 2D coordinates Mol file for the small molecule Search links Involved in 142 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline Na+ Identifier CHEBI:29101 (CAS: 17341-25-2) help_outline Charge 1 Formula Na InChIKeyhelp_outline FKNQFGJONOIPTF-UHFFFAOYSA-N SMILEShelp_outline [Na+] 2D coordinates Mol file for the small molecule Search links Involved in 259 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:71347 | RHEA:71348 | RHEA:71349 | RHEA:71350 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Publications
-
Na+- and Cl--coupled active transport of carnitine by the amino acid transporter ATB(0,+) from mouse colon expressed in HRPE cells and Xenopus oocytes.
Nakanishi T., Hatanaka T., Huang W., Prasad P.D., Leibach F.H., Ganapathy M.E., Ganapathy V.
1. ATB(0,+) is an amino acid transporter energized by transmembrane gradients of Na+ and Cl(-) and membrane potential. We cloned this transporter from mouse colon and expressed the clone functionally in mammalian (human retinal pigment epithelial, HRPE) cells and Xenopus laevis oocytes to investig ... >> More
1. ATB(0,+) is an amino acid transporter energized by transmembrane gradients of Na+ and Cl(-) and membrane potential. We cloned this transporter from mouse colon and expressed the clone functionally in mammalian (human retinal pigment epithelial, HRPE) cells and Xenopus laevis oocytes to investigate the interaction of carnitine and its acyl esters with the transporter. 2. When expressed in mammalian cells, the cloned ATB(0,+) was able to transport carnitine, propionylcarnitine and acetylcarnitine. The transport process was Na(+) and Cl(-) dependent and inhibitable by the amino acid substrates of the transporter. The Michaelis constant for carnitine was 0.83 +/-0.08 mM and the Hill coefficient for Na(+) activation was 1.6 +/-0.1. 3. When expressed in Xenopus laevis oocytes, the cloned ATB(0,+) was able to induce inward currents in the presence of carnitine and propionylcarnitine under voltage-clamped conditions. There was no detectable current in the presence of acetylcarnitine. Carnitine-induced currents were obligatorily dependent on the presence of Na(+) and Cl(-). The currents were saturable with carnitine and the Michaelis constant was 1.8 +/- 0.4 mM. The analysis of Na(+)- and Cl(-)-activation kinetics revealed that 2 Na(+) and 1 Cl(-) were involved in the transport of carnitine via the transporter. 4. These studies describe the identification of a novel function for the amino acid transporter ATB(0,+). Since this transporter is expressed in the intestinal tract, lung and mammary gland, it is likely to play a significant role in the handling of carnitine in these tissues. 5. A Na(+)-dependent transport system for carnitine has already been described. This transporter, known as OCTN2 (novel organic cation transporter 2), is expressed in most tissues and transports carnitine with high affinity. It is energized, however, only by a Na(+) gradient and membrane potential. In contrast, ATB(0,+) is a low-affinity transporter for carnitine, but exhibits much higher concentrative capacity than OCTN2 because of its energization by transmembrane gradients of Na(+) and Cl(-) as well as by membrane potential. << Less
J. Physiol. (Lond.) 532:297-304(2001) [PubMed] [EuropePMC]
This publication is cited by 9 other entries.
-
Cloning and functional expression of a human Na(+) and Cl(-)-dependent neutral and cationic amino acid transporter B(0+).
Sloan J.L., Mager S.
A Na(+)-dependent neutral and cationic amino acid transport system (B(0+)) plays an important role in many cells and tissues; however, the molecular basis for this transport system is still unknown. To identify new transporters, the expressed sequence tag database was queried, and cDNA fragments w ... >> More
A Na(+)-dependent neutral and cationic amino acid transport system (B(0+)) plays an important role in many cells and tissues; however, the molecular basis for this transport system is still unknown. To identify new transporters, the expressed sequence tag database was queried, and cDNA fragments with sequence similarity to the Na(+)/Cl(-)-dependent neurotransmitter transporter family were identified. Based on these sequences, rapid amplification of cDNA ends of human mammary gland cDNA was used to obtain a cDNA of 4.5 kilobases (kb). The open reading frame encodes a 642-amino acid protein named amino acid transporter B(0+). Human ATB(0+) (hATB(0+)) is a novel member of the Na(+)/Cl(-)-dependent neurotransmitter transporter family with the highest sequence similarity to the glycine and proline transporters. Northern blot analysis identified transcripts of approximately 4.5 kb and approximately 2 kb in the lung. Another tissue survey suggests expression in the trachea, salivary gland, mammary gland, stomach, and pituitary gland. Electrophysiology and radiolabeled amino acid uptake measurements were used to functionally characterize the transporter expressed in Xenopus oocytes. hATB(0+) was found to transport both neutral and cationic amino acids, with the highest affinity for hydrophobic amino acids and the lowest affinity for proline. Amino acid transport was Na(+) and Cl(-)-dependent and was attenuated in the presence of 2-aminobicyclo-[2.2.1]-heptane-2-carboxylic acid, a system B(0+) inhibitor. These characteristics are consistent with system B(0+) amino acid transport. Thus, hATB(0+) is the first cloned B(0+) amino acid transporter. << Less
J. Biol. Chem. 274:23740-23745(1999) [PubMed] [EuropePMC]
This publication is cited by 16 other entries.
-
Transport of D-serine via the amino acid transporter ATB(0,+) expressed in the colon.
Hatanaka T., Huang W., Nakanishi T., Bridges C.C., Smith S.B., Prasad P.D., Ganapathy M.E., Ganapathy V.
D-Serine, synthesized endogenously in the brain, is an important modulator of glutamatergic neurotransmission. Since colonic bacteria produce D-serine, we asked the question whether there are transport mechanisms in the colon that might make this exogenously produced D-serine available to the host ... >> More
D-Serine, synthesized endogenously in the brain, is an important modulator of glutamatergic neurotransmission. Since colonic bacteria produce D-serine, we asked the question whether there are transport mechanisms in the colon that might make this exogenously produced D-serine available to the host. Here we identify for the first time an amino acid transporter in the intestine for high-affinity active transport of D-serine. This transporter, called ATB(0,+), is a Na(+)- and Cl(-)-coupled transporter for L-enantiomers of neutral and cationic amino acids. Here we demonstrate that ATB(0,+) is also capable of mediating the Na(+)- and Cl(-)-coupled transport of D-serine. The affinity of ATB(0,+) for L-serine and D-serine is similar, the K(t) value for the two enantiomers being approximately 150 microM. In addition to D-serine, ATB(0,+) transports D-alanine, D-methionine, D-leucine, and D-tryptophan. However, several other neutral and cationic amino acids that are transportable substrates for ATB(0,+) as L-enantiomers are not transported when presented as D-enantiomers. ATB(0,+) is expressed in the intestinal tract, interestingly not in the proximal intestine but in the distal intestine. Expression is most predominant in the colon where the transporter is localized to the luminal membrane of colonocytes, making this transporter uniquely suitable for absorption of bacteria-derived D-serine. << Less
Biochem Biophys Res Commun 291:291-295(2002) [PubMed] [EuropePMC]
This publication is cited by 18 other entries.