Reaction participants Show >> << Hide
- Name help_outline L-glutamate Identifier CHEBI:29985 (CAS: 11070-68-1) help_outline Charge -1 Formula C5H8NO4 InChIKeyhelp_outline WHUUTDBJXJRKMK-VKHMYHEASA-M SMILEShelp_outline [NH3+][C@@H](CCC([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 244 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:70955 | RHEA:70956 | RHEA:70957 | RHEA:70958 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
MetaCyc help_outline | ||||
Reactome help_outline |
Publications
-
Kinetics of glutamate efflux in rat liver mitochondria.
Hoek J.B., Coll K.E., Williamson J.R.
The transport of glutamate was studied in isolated rat liver mitochondria preloaded with glutamate in the presence of respiratory inhibitors. Glutamate efflux was initiated by dilution of the loaded mitochondria into a glutamate-free medium, and the rate of transport was measured by following the ... >> More
The transport of glutamate was studied in isolated rat liver mitochondria preloaded with glutamate in the presence of respiratory inhibitors. Glutamate efflux was initiated by dilution of the loaded mitochondria into a glutamate-free medium, and the rate of transport was measured by following the disappearance of glutamate from the mitochondrial matrix following rapid centrifugation through silicone oil. Glutamate efflux was inhibited extensively by bromcresol purple and partially by N-ethylmaleimide, compounds which are both known to inhibit mitochondrial glutamate uptake. The efflux process was stereospecific for L-glutamate and exhibited an activation energy of 19.2 kcal/mol. The rate of glutamate efflux was not affected by changes in the mitochondrial membrane potential. However, a good correlation was observed between the rate of glutamate efflux and the matrix pH, the efflux rate being stimulated by a decrease in matrix pH in the range from 8.0 to 7.2. In contrast, acidification of the incubation medium in the pH range 7.4 to 6.5 inhibited the rate of glutamate efflux. A kinetic analysis was made of the efflux reaction by a computer curve-fitting procedure which fits the experimental data to an integrated rate equation (Williamson, J.R., and Viale, R.O. (1979) Methods Enzymol. 56, 252-278). The results indicated that a fall in the matrix pH primarily caused a decrease in the K'm for matrix glutamate, with little change in V'max. In contrast, a low external pH had an effect on the V'max but not on the K'm for intramitochondrial glutamate. The results are in agreement with a symmetrical sequential model of glutamate transport where the glutamate anion binds to the protonated carrier. << Less
-
Identification of the mitochondrial glutamate transporter. Bacterial expression, reconstitution, functional characterization, and tissue distribution of two human isoforms.
Fiermonte G., Palmieri L., Todisco S., Agrimi G., Palmieri F., Walker J.E.
The mitochondrial carriers are a family of transport proteins in the inner membranes of mitochondria. They shuttle substrates, metabolites, and cofactors through this membrane and connect cytoplasm functions with others in the matrix. Glutamate is co-transported with H(+) (or exchanged for OH(-)), ... >> More
The mitochondrial carriers are a family of transport proteins in the inner membranes of mitochondria. They shuttle substrates, metabolites, and cofactors through this membrane and connect cytoplasm functions with others in the matrix. Glutamate is co-transported with H(+) (or exchanged for OH(-)), but no protein has ever been associated with this activity. Two human expressed sequence tags encode proteins of 323 and 315 amino acids with 63% identity that are related to the aspartate-glutamate carrier, a member of the carrier family. They have been overexpressed in Escherichia coli and reconstituted into phospholipid vesicles. Their transport properties demonstrate that the two proteins are isoforms of the glutamate/H(+) symporter described in the past in whole mitochondria. Isoform 1 is expressed at higher levels than isoform 2 in all the tissues except in brain, where the two isoforms are expressed at comparable levels. The differences in expression levels and kinetic parameters of the two isoforms suggest that isoform 2 matches the basic requirement of all tissues especially with respect to amino acid degradation, and isoform 1 becomes operative to accommodate higher demands associated with specific metabolic functions such as ureogenesis. << Less