Reaction participants Show >> << Hide
- Name help_outline anthranilate Identifier CHEBI:16567 Charge -1 Formula C7H6NO2 InChIKeyhelp_outline RWZYAGGXGHYGMB-UHFFFAOYSA-M SMILEShelp_outline Nc1ccccc1C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 26 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,284 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 2-aminobenzoyl-AMP Identifier CHEBI:188464 Charge -1 Formula C17H18N6O8P InChIKeyhelp_outline XZXXWUQOHYJTTC-XNIJJKJLSA-M SMILEShelp_outline NC1=NC=NC2=C1N=CN2[C@@H]3O[C@H](COP(=O)(OC(C4=CC=CC=C4N)=O)[O-])[C@@H](O)[C@H]3O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline diphosphate Identifier CHEBI:33019 (Beilstein: 185088) help_outline Charge -3 Formula HO7P2 InChIKeyhelp_outline XPPKVPWEQAFLFU-UHFFFAOYSA-K SMILEShelp_outline OP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,139 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:70007 | RHEA:70008 | RHEA:70009 | RHEA:70010 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Benzoate-coenzyme A ligase from Thauera aromatica: an enzyme acting in anaerobic and aerobic pathways.
Schuehle K., Gescher J., Feil U., Paul M., Jahn M., Schaegger H., Fuchs G.
In the denitrifying member of the beta-Proteobacteria Thauera aromatica, the anaerobic metabolism of aromatic acids such as benzoate or 2-aminobenzoate is initiated by the formation of the coenzyme A (CoA) thioester, benzoyl-CoA and 2-aminobenzoyl-CoA, respectively. Both aromatic substrates were t ... >> More
In the denitrifying member of the beta-Proteobacteria Thauera aromatica, the anaerobic metabolism of aromatic acids such as benzoate or 2-aminobenzoate is initiated by the formation of the coenzyme A (CoA) thioester, benzoyl-CoA and 2-aminobenzoyl-CoA, respectively. Both aromatic substrates were transformed to the acyl-CoA intermediate by a single CoA ligase (AMP forming) that preferentially acted on benzoate. This benzoate-CoA ligase was purified and characterized as a 57-kDa monomeric protein. Based on V(max)/K(m), the specificity constant for 2-aminobenzoate was 15 times lower than that for benzoate; this may be the reason for the slower growth on 2-aminobenzoate. The benzoate-CoA ligase gene was cloned and sequenced and was found not to be part of the gene cluster encoding the general benzoyl-CoA pathway of anaerobic aromatic metabolism. Rather, it was located in a cluster of genes coding for a novel aerobic benzoate oxidation pathway. In line with this finding, the same CoA ligase was induced during aerobic growth with benzoate. A deletion mutant not only was unable to grow anaerobically on benzoate or 2-aminobenzoate, but also aerobic growth on benzoate was affected. This suggests that benzoate induces a single benzoate-CoA ligase. The product of benzoate activation, benzoyl-CoA, then acts as inducer of separate anaerobic or aerobic pathways of benzoyl-CoA, depending on whether oxygen is lacking or present. << Less
J. Bacteriol. 185:4920-4929(2003) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Aryl Coenzyme A Ligases, a Subfamily of the Adenylate-Forming Enzyme Superfamily.
Arnold M.E., Kaplieva-Dudek I., Heker I., Meckenstock R.U.
Aryl coenzyme A (CoA) ligases belong to class I of the adenylate-forming enzyme superfamily (ANL superfamily). They catalyze the formation of thioester bonds between aromatic compounds and CoA and occur in nearly all forms of life. These ligases are involved in various metabolic pathways degrading ... >> More
Aryl coenzyme A (CoA) ligases belong to class I of the adenylate-forming enzyme superfamily (ANL superfamily). They catalyze the formation of thioester bonds between aromatic compounds and CoA and occur in nearly all forms of life. These ligases are involved in various metabolic pathways degrading benzene, toluene, ethylbenzene, and xylene (BTEX) or polycyclic aromatic hydrocarbons (PAHs). They are often necessary to produce the central intermediate benzoyl-CoA that occurs in various anaerobic pathways. The substrate specificity is very diverse between enzymes within the same class, while the dependency on Mg<sup>2+</sup>, ATP, and CoA as well as oxygen insensitivity are characteristics shared by the whole enzyme class. Some organisms employ the same aryl-CoA ligase when growing aerobically and anaerobically, while others induce different enzymes depending on the environmental conditions. Aryl-CoA ligases can be divided into two major groups, benzoate:CoA ligase-like enzymes and phenylacetate:CoA ligase-like enzymes. They are widely distributed between the phylogenetic clades of the ANL superfamily and show closer relationships within the subfamilies than to other aryl-CoA ligases. This, together with residual CoA ligase activity in various other enzymes of the ANL superfamily, leads to the conclusion that CoA ligases might be the ancestral proteins from which all other ANL superfamily enzymes developed. << Less
Appl Environ Microbiol 87:e0069021-e0069021(2021) [PubMed] [EuropePMC]
This publication is cited by 8 other entries.
Comments
RHEA:70007 part of RHEA:10828