Enzymes
UniProtKB help_outline | 1 proteins |
Reaction participants Show >> << Hide
- Name help_outline L-xylono-1,4-lactone Identifier CHEBI:18118 Charge 0 Formula C5H8O5 InChIKeyhelp_outline CUOKHACJLGPRHD-NUNKFHFFSA-N SMILEShelp_outline OC[C@@H]1OC(=O)[C@@H](O)[C@@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,709 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline dehydro-L-arabinono-1,4-lactone Identifier CHEBI:177361 Charge -1 Formula C5H5O5 InChIKeyhelp_outline ZZZCUOFIHGPKAK-REOHCLBHSA-M SMILEShelp_outline O1C(C(=C([C@@H]1CO)[O-])O)=O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O2 Identifier CHEBI:16240 (Beilstein: 3587191; CAS: 7722-84-1) help_outline Charge 0 Formula H2O2 InChIKeyhelp_outline MHAJPDPJQMAIIY-UHFFFAOYSA-N SMILEShelp_outline [H]OO[H] 2D coordinates Mol file for the small molecule Search links Involved in 449 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:68360 | RHEA:68361 | RHEA:68362 | RHEA:68363 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Publications
-
Characterisation of D-arabinono-1,4-lactone oxidase from Candida albicans ATCC 10231.
Huh W.K., Kim S.T., Yang K.S., Seok Y.J., Hah Y.C., Kang S.O.
D-Erythroascorbic acid was detected from the cell extracts of a dimorphic fungus, Candida albicans. Its concentration in yeast cells grown at 25 degrees C was estimated to be about 0.45 mumol/ml cell water. D-Arabinono-1,4-lactone oxidase, which catalyses the final step in the biosynthesis of D-er ... >> More
D-Erythroascorbic acid was detected from the cell extracts of a dimorphic fungus, Candida albicans. Its concentration in yeast cells grown at 25 degrees C was estimated to be about 0.45 mumol/ml cell water. D-Arabinono-1,4-lactone oxidase, which catalyses the final step in the biosynthesis of D-erythroascorbic acid, was purified 639-fold from the mitochondrial fraction of C. albicans to apparent homogeneity, with an overall yield of 21.2%, by a purification procedure consisting of Triton X-100 solubilisation, ammonium sulphate precipitation, anion-exchange, hydrophobic-interaction, gel-filtration and dye-ligand chromatographies. Gel-filtration chromatography and polyacrylamide-gradient gel electrophoresis in the presence of deoxycholate gave apparent molecular masses of 110 kDa and 84.4 kDa, respectively. SDS/PAGE showed only one protein band corresponding to a molecular mass of 66.7 kDa. Considering the binding of detergents, the enzyme is suggested to be a single polypeptide. The enzyme showed a typical fluorescence excitation spectrum of a flavin-containing enzyme. The flavin was not released by treatment with SDS, CCl3CO2H or boiling, indicating that it may be covalently bound to the enzyme protein. The enzyme was optimally active at 40 degrees C and at pH 6.1. The enzyme was stable in the range pH 7.5-10. An apparent Km value for D-arabinono-1,4-lactone was 44.1 mM. L-Galactono-1,4-lactone, L-gulono-1,4-lactone and L-xylono-1,4-lactone could also serve as substrates. Competitive inhibition was demonstrated with D-glucono-1,5-lactone, L-arabinono-1,4-lactone, D-galactono-1,4-lactone and D-gulono-1,4-lactone. p-Chloromercuribenzoate, N-ethylmaleimide, iodoacetic acid, iodoacetamide and divalent metal ions such as Cd2+, Hg2+, Mn2+ and Zn2+ exhibited inhibitory effects on the enzyme. << Less
Eur. J. Biochem. 225:1073-1079(1994) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.