Enzymes
UniProtKB help_outline | 1 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,186 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline xylitol Identifier CHEBI:17151 (Beilstein: 1720523; CAS: 87-99-0) help_outline Charge 0 Formula C5H12O5 InChIKeyhelp_outline HEBKCHPVOIAQTA-SCDXWVJYSA-N SMILEShelp_outline OC[C@H](O)[C@@H](O)[C@H](O)CO 2D coordinates Mol file for the small molecule Search links Involved in 7 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-xylulose Identifier CHEBI:17399 (CAS: 527-50-4) help_outline Charge 0 Formula C5H10O5 InChIKeyhelp_outline ZAQJHHRNXZUBTE-WVZVXSGGSA-N SMILEShelp_outline OC[C@H](O)[C@@H](O)C(=O)CO 2D coordinates Mol file for the small molecule Search links Involved in 8 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,116 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:68100 | RHEA:68101 | RHEA:68102 | RHEA:68103 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Polyol dehydrogenases. 3. Galactitol dehydrogenase and D-iditol dehydrogenase.
SHAW D.R.
Biochem J 64:394-405(1956) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
A novel NADH-linked l-xylulose reductase in the l-arabinose catabolic pathway of yeast.
Verho R., Putkonen M., Londesborough J., Penttila M., Richard P.
An NADH-dependent l-xylulose reductase and the corresponding gene were identified from the yeast Ambrosiozyma monospora. The enzyme is part of the yeast pathway for l-arabinose catabolism. A fungal pathway for l-arabinose utilization has been described previously for molds. In this pathway l-arabi ... >> More
An NADH-dependent l-xylulose reductase and the corresponding gene were identified from the yeast Ambrosiozyma monospora. The enzyme is part of the yeast pathway for l-arabinose catabolism. A fungal pathway for l-arabinose utilization has been described previously for molds. In this pathway l-arabinose is sequentially converted to l-arabinitol, l-xylulose, xylitol, and d-xylulose and enters the pentose phosphate pathway as d-xylulose 5-phosphate. In molds the reductions are NADPH-linked, and the oxidations are NAD(+)-linked. Here we show that in A. monospora the pathway is similar, i.e. it has the same two reduction and two oxidation reactions, but the reduction by l-xylulose reductase is not performed by a strictly NADPH-dependent enzyme as in molds but by a strictly NADH-dependent enzyme. The ALX1 gene encoding the NADH-dependent l-xylulose reductase is strongly expressed during growth on l-arabinose as shown by Northern analysis. The gene was functionally overexpressed in Saccharomyces cerevisiae and the purified His-tagged protein characterized. The reversible enzyme converts l-xylulose to xylitol. It also converts d-ribulose to d-arabinitol but has no activity with l-arabinitol or adonitol, i.e. it is specific for sugar alcohols where, in a Fischer projection, the hydroxyl group of the C-2 is in the l-configuration and the hydroxyl group of C-3 is in the d-configuration. It also has no activity with C-6 sugars or sugar alcohols. The K(m) values for l-xylulose and d-ribulose are 9.6 and 4.7 mm, respectively. To our knowledge this is the first report of an NADH-linked l-xylulose reductase. << Less
J. Biol. Chem. 279:14746-14751(2004) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.