Reaction participants Show >> << Hide
-
Namehelp_outline
a 3'-end 2',3'-cyclophospho-ribonucleotide-RNA
Identifier
RHEA-COMP:10464
Reactive part
help_outline
- Name help_outline a 3'-terminal ribonucleotide 2',3'-cyclic phosphate residue Identifier CHEBI:83064 Charge -2 Formula C5H6O8P2R SMILEShelp_outline [O-]P(-*)(=O)OC[C@H]1O[C@@H]([*])[C@@H]2OP([O-])(=O)O[C@H]12 2D coordinates Mol file for the small molecule Search links Involved in 7 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
a 5'-end dephospho-ribonucleoside-RNA
Identifier
RHEA-COMP:13936
Reactive part
help_outline
- Name help_outline 5'-end 5'-dephospho ribonucleotide residue Identifier CHEBI:138284 Charge 0 Formula C5H8O4R SMILEShelp_outline [C@@H]1([C@H]([C@@H](O[C@@H]1CO)*)O)O* 2D coordinates Mol file for the small molecule Search links Involved in 9 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline GTP Identifier CHEBI:37565 (Beilstein: 5211792) help_outline Charge -4 Formula C10H12N5O14P3 InChIKeyhelp_outline XKMLYUALXHKNFT-UUOKFMHZSA-J SMILEShelp_outline Nc1nc2n(cnc2c(=O)[nH]1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 94 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
a ribonucleotidyl-ribonucleotide-RNA
Identifier
RHEA-COMP:17355
Reactive part
help_outline
- Name help_outline ribonucleotide-ribonucleotide residue Identifier CHEBI:173118 Charge -2 Formula C10H14O12P2R2 SMILEShelp_outline *[C@@H]1O[C@H](COP(*)(=O)[O-])[C@H]([C@H]1O)OP(OC[C@H]2O[C@@H](*)[C@@H]([C@@H]2O*)O)([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 7 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline diphosphate Identifier CHEBI:33019 (Beilstein: 185088) help_outline Charge -3 Formula HO7P2 InChIKeyhelp_outline XPPKVPWEQAFLFU-UHFFFAOYSA-K SMILEShelp_outline OP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,129 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline GMP Identifier CHEBI:58115 Charge -2 Formula C10H12N5O8P InChIKeyhelp_outline RQFCJASXJCIDSX-UUOKFMHZSA-L SMILEShelp_outline Nc1nc2n(cnc2c(=O)[nH]1)[C@@H]1O[C@H](COP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 39 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:68080 | RHEA:68081 | RHEA:68082 | RHEA:68083 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
Rewriting the rules for end joining via enzymatic splicing of DNA 3'-PO4 and 5'-OH ends.
Das U., Chakravarty A.K., Remus B.S., Shuman S.
There are many biological contexts in which DNA damage generates "dirty" breaks with 3'-PO4 (or cyclic-PO4) and 5'-OH ends that cannot be sealed by DNA ligases. Here we show that the Escherichia coli RNA ligase RtcB can splice these dirty DNA ends via a unique chemical mechanism. RtcB transfers GM ... >> More
There are many biological contexts in which DNA damage generates "dirty" breaks with 3'-PO4 (or cyclic-PO4) and 5'-OH ends that cannot be sealed by DNA ligases. Here we show that the Escherichia coli RNA ligase RtcB can splice these dirty DNA ends via a unique chemical mechanism. RtcB transfers GMP from a covalent RtcB-GMP intermediate to a DNA 3'-PO4 to form a "capped" 3' end structure, DNA3'pp5'G. When a suitable DNA 5'-OH end is available, RtcB catalyzes attack of the 5'-OH on DNA3'pp5'G to form a 3'-5' phosphodiester splice junction. Our findings unveil an enzymatic capacity for DNA 3' capping and the sealing of DNA breaks with 3'-PO4 and 5'-OH termini, with implications for DNA repair and DNA rearrangements. << Less
Proc. Natl. Acad. Sci. U.S.A. 110:20437-20442(2013) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
-
RtcB, a novel RNA ligase, can catalyze tRNA splicing and HAC1 mRNA splicing in vivo.
Tanaka N., Meineke B., Shuman S.
RtcB enzymes are novel RNA ligases that join 2',3'-cyclic phosphate and 5'-OH ends. The phylogenetic distribution of RtcB points to its candidacy as a tRNA splicing/repair enzyme. Here we show that Escherichia coli RtcB is competent and sufficient for tRNA splicing in vivo by virtue of its ability ... >> More
RtcB enzymes are novel RNA ligases that join 2',3'-cyclic phosphate and 5'-OH ends. The phylogenetic distribution of RtcB points to its candidacy as a tRNA splicing/repair enzyme. Here we show that Escherichia coli RtcB is competent and sufficient for tRNA splicing in vivo by virtue of its ability to complement growth of yeast cells that lack the endogenous "healing/sealing-type" tRNA ligase Trl1. RtcB also protects yeast trl1Δ cells against a fungal ribotoxin that incises the anticodon loop of cellular tRNAs. Moreover, RtcB can replace Trl1 as the catalyst of HAC1 mRNA splicing during the unfolded protein response. Thus, RtcB is a bona fide RNA repair enzyme with broad physiological actions. Biochemical analysis of RtcB highlights the uniqueness of its active site and catalytic mechanism. Our findings draw attention to tRNA ligase as a promising drug target. << Less
J. Biol. Chem. 286:30253-30257(2011) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
-
Coevolution of RtcB and Archease created a multiple-turnover RNA ligase.
Desai K.K., Beltrame A.L., Raines R.T.
RtcB is a noncanonical RNA ligase that joins either 2',3'-cyclic phosphate or 3'-phosphate termini to 5'-hydroxyl termini. The genes encoding RtcB and Archease constitute a tRNA splicing operon in many organisms. Archease is a cofactor of RtcB that accelerates RNA ligation and alters the NTP speci ... >> More
RtcB is a noncanonical RNA ligase that joins either 2',3'-cyclic phosphate or 3'-phosphate termini to 5'-hydroxyl termini. The genes encoding RtcB and Archease constitute a tRNA splicing operon in many organisms. Archease is a cofactor of RtcB that accelerates RNA ligation and alters the NTP specificity of the ligase from Pyrococcus horikoshii. Yet, not all organisms that encode RtcB also encode Archease. Here we sought to understand the differences between Archease-dependent and Archease-independent RtcBs so as to illuminate the evolution of Archease and its function. We report on the Archease-dependent RtcB from Thermus thermophilus and the Archease-independent RtcB from Thermobifida fusca. We find that RtcB from T. thermophilus can catalyze multiple turnovers only in the presence of Archease. Remarkably, Archease from P. horikoshii can activate T. thermophilus RtcB, despite low sequence identity between the Archeases from these two organisms. In contrast, RtcB from T. fusca is a single-turnover enzyme that is unable to be converted into a multiple-turnover ligase by Archease from either P. horikoshii or T. thermophilus. Thus, our data indicate that Archease likely evolved to support multiple-turnover activity of RtcB and that coevolution of the two proteins is necessary for a functional interaction. << Less
RNA 21:1866-1872(2015) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
-
Distinct contributions of enzymic functional groups to the 2',3'-cyclic phosphodiesterase, 3'-phosphate guanylylation, and 3'-ppG/5'-OH ligation steps of the Escherichia coli RtcB nucleic acid splicing pathway.
Maughan W.P., Shuman S.
<h4>Unlabelled</h4>Escherichia coli RtcB is a founding member of a family of manganese-dependent RNA repair enzymes that join RNA 2′,3′-cyclic phosphate (RNA>p) or RNA 3′-phosphate (RNAp) ends to 5′-OH RNA (HORNA) ends in a multistep pathway whereby RtcB (i) hydrolyzes RNA>p to RNAp, (ii) transfer ... >> More
<h4>Unlabelled</h4>Escherichia coli RtcB is a founding member of a family of manganese-dependent RNA repair enzymes that join RNA 2′,3′-cyclic phosphate (RNA>p) or RNA 3′-phosphate (RNAp) ends to 5′-OH RNA (HORNA) ends in a multistep pathway whereby RtcB (i) hydrolyzes RNA>p to RNAp, (ii) transfers GMP from GTP to RNAp to form to RNAppG, and (iii) directs the attack of 5′-OH on RNAppG to form a 3′-5′ phosphodiester splice junction. The crystal structure of the homologous archaeal RtcB enzyme revealed an active site with two closely spaced manganese ions, Mn1 and Mn2, that interact with the GTP phosphates. By studying the reactions of wild-type E. coli RtcB and RtcB alanine mutants with 3′-phosphate-, 2′,3′-cyclic phosphate-, and 3′-ppG-terminated substrates, we found that enzymic constituents of the two metal coordination complexes (Cys78, His185, and His281 for Mn1 and Asp75, Cys78, and His168 for Mn2 in E. coli RtcB) play distinct catalytic roles. For example, whereas the C78A mutation abolished all steps assayed, the D75A mutation allowed cyclic phosphodiester hydrolysis but crippled 3′-phosphate guanylylation, and the H281A mutant was impaired in overall HORNAp and HORNA>p ligation but was able to seal a preguanylylated substrate. The archaeal counterpart of E. coli RtcB Arg189 coordinates a sulfate anion construed to mimic the position of an RNA phosphate. We propose that Arg189 coordinates a phosphodiester at the 5′-OH end, based on our findings that the R189A mutation slowed the step of RNAppG/HORNA sealing by a factor of 200 compared to that with wild-type RtcB while decreasing the rate of RNAppG formation by only 3-fold.<h4>Importance</h4>RtcB enzymes comprise a widely distributed family of manganese- and GTP-dependent RNA repair enzymes that ligate 2′,3′-cyclic phosphate ends to 5′-OH ends via RNA 3′-phosphate and RNA(3′)pp(5′)G intermediates. The RtcB active site includes two adjacent manganese ions that engage the GTP phosphates. Alanine scanning of Escherichia coli RtcB reveals distinct contributions of metal-binding residues Cys78, Asp75, and His281 at different steps of the RtcB pathway. The RNA contacts of RtcB are uncharted. Mutagenesis implicates Arg189 in engaging the 5′-OH RNA end. << Less
J. Bacteriol. 198:1294-1304(2016) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.
-
tRNA ligase catalyzes the GTP-dependent ligation of RNA with 3'-phosphate and 5'-hydroxyl termini.
Desai K.K., Raines R.T.
The RNA ligase RtcB is conserved in all domains of life and is essential for tRNA maturation in archaea and metazoa. Here we show that bacterial and archaeal RtcB catalyze the GTP-dependent ligation of RNA with 3'-phosphate and 5'-hydroxyl termini. Reactions with analogues of RNA and GTP suggest a ... >> More
The RNA ligase RtcB is conserved in all domains of life and is essential for tRNA maturation in archaea and metazoa. Here we show that bacterial and archaeal RtcB catalyze the GTP-dependent ligation of RNA with 3'-phosphate and 5'-hydroxyl termini. Reactions with analogues of RNA and GTP suggest a mechanism in which RtcB heals the 3'-phosphate terminus by forming a 2',3'-cyclic phosphate before joining it to the 5'-hydroxyl group of a second RNA strand. Thus, RtcB can ligate RNA cleaved by RNA endonucleases, which generate 2',3'-cyclic phosphate and then 3'-phosphate termini on one strand, and a 5'-hydroxyl terminus on another strand. << Less
Biochemistry 51:1333-1335(2012) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
-
RtcB is the RNA ligase component of an Escherichia coli RNA repair operon.
Tanaka N., Shuman S.
RNA 2',3'-cyclic phosphate ends play important roles in RNA metabolism as substrates for RNA ligases during tRNA restriction-repair and tRNA splicing. Diverse bacteria from multiple phyla encode a two-component RNA repair cassette, comprising Pnkp (polynucleotide kinase-phosphatase-ligase) and Hen ... >> More
RNA 2',3'-cyclic phosphate ends play important roles in RNA metabolism as substrates for RNA ligases during tRNA restriction-repair and tRNA splicing. Diverse bacteria from multiple phyla encode a two-component RNA repair cassette, comprising Pnkp (polynucleotide kinase-phosphatase-ligase) and Hen1 (RNA 3'-terminal ribose 2'-O-methyltransferase), that heals and then seals broken tRNAs with 2',3'-cyclic phosphate and 5'-OH ends. The Pnkp-Hen1 repair operon is absent in the majority of bacterial species, thereby raising the prospect that other RNA repair systems might be extant. A candidate component is RNA 3'-phosphate cyclase, a widely distributed enzyme that transforms RNA 3'-monophosphate termini into 2',3'-cyclic phosphates but cannot seal the ends it produces. Escherichia coli RNA cyclase (RtcA) is encoded in a σ(54)-regulated operon with RtcB, a protein of unknown function. Taking a cue from Pnkp-Hen1, we purified E. coli RtcB and tested it for RNA ligase activity. We report that RtcB per se seals broken tRNA-like stem-loop structures with 2',3'-cyclic phosphate and 5'-OH ends to form a splice junction with a 2'-OH, 3',5'-phosphodiester. We speculate that: (i) RtcB might afford bacteria a means to recover from stress-induced RNA damage; and (ii) RtcB homologs might catalyze tRNA repair or splicing reactions in archaea and eukarya. << Less
J. Biol. Chem. 286:7727-7731(2011) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
-
Novel mechanism of RNA repair by RtcB via sequential 2',3'-cyclic phosphodiesterase and 3'-Phosphate/5'-hydroxyl ligation reactions.
Tanaka N., Chakravarty A.K., Maughan B., Shuman S.
RtcB enzymes are a newly discovered family of RNA ligases, implicated in tRNA splicing and other RNA repair reactions, that seal broken RNAs with 2',3'-cyclic phosphate and 5'-OH ends. Parsimony and energetics would suggest a one-step mechanism for RtcB sealing via attack by the O5' nucleophile on ... >> More
RtcB enzymes are a newly discovered family of RNA ligases, implicated in tRNA splicing and other RNA repair reactions, that seal broken RNAs with 2',3'-cyclic phosphate and 5'-OH ends. Parsimony and energetics would suggest a one-step mechanism for RtcB sealing via attack by the O5' nucleophile on the cyclic phosphate, with expulsion of the ribose O2' and generation of a 3',5'-phosphodiester at the splice junction. Yet we find that RtcB violates Occam's razor, insofar as (i) it is adept at ligating 3'-monophosphate and 5'-OH ends; (ii) it has an intrinsic 2',3'-cyclic phosphodiesterase activity. The 2',3'-cyclic phosphodiesterase and ligase reactions both require manganese and are abolished by mutation of the RtcB active site. Thus, RtcB executes a unique two-step pathway of strand joining whereby the 2',3'-cyclic phosphodiester end is hydrolyzed to a 3'-monophosphate, which is then linked to the 5'-OH end to form the splice junction. The energy for the 3'-phosphate ligase activity is provided by GTP, which reacts with RtcB in the presence of manganese to form a covalent RtcB-guanylate adduct. This adduct is sensitive to acid and hydroxylamine but resistant to alkali, consistent with a phosphoramidate bond. << Less
J. Biol. Chem. 286:43134-43143(2011) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
-
RNA ligase RtcB splices 3'-phosphate and 5'-OH ends via covalent RtcB-(histidinyl)-GMP and polynucleotide-(3')pp(5')G intermediates.
Chakravarty A.K., Subbotin R., Chait B.T., Shuman S.
A cherished tenet of nucleic acid enzymology holds that synthesis of polynucleotide 3'-5' phosphodiesters proceeds via the attack of a 3'-OH on a high-energy 5' phosphoanhydride: either a nucleoside 5'-triphosphate in the case of RNA/DNA polymerases or an adenylylated intermediate A(5')pp(5')N--in ... >> More
A cherished tenet of nucleic acid enzymology holds that synthesis of polynucleotide 3'-5' phosphodiesters proceeds via the attack of a 3'-OH on a high-energy 5' phosphoanhydride: either a nucleoside 5'-triphosphate in the case of RNA/DNA polymerases or an adenylylated intermediate A(5')pp(5')N--in the case of polynucleotide ligases. RtcB exemplifies a family of RNA ligases implicated in tRNA splicing and repair. Unlike classic ligases, RtcB seals broken RNAs with 3'-phosphate and 5'-OH ends. Here we show that RtcB executes a three-step ligation pathway entailing (i) reaction of His337 of the enzyme with GTP to form a covalent RtcB-(histidinyl-N)-GMP intermediate; (ii) transfer of guanylate to a polynucleotide 3'-phosphate to form a polynucleotide-(3')pp(5')G intermediate; and (iii) attack of a 5'-OH on the -N(3')pp(5')G end to form the splice junction. RtcB is structurally sui generis, and its chemical mechanism is unique. The wide distribution of RtcB proteins in bacteria, archaea, and metazoa raises the prospect of an alternative enzymology based on covalently activated 3' ends. << Less
Proc. Natl. Acad. Sci. U.S.A. 109:6072-6077(2012) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
-
The sequential 2',3'-cyclic phosphodiesterase and 3'-phosphate/5'-OH ligation steps of the RtcB RNA splicing pathway are GTP-dependent.
Chakravarty A.K., Shuman S.
The RNA ligase RtcB splices broken RNAs with 5'-OH and either 2',3'-cyclic phosphate or 3'-phosphate ends. The 3'-phosphate ligase activity requires GTP and entails the formation of covalent RtcB-(histidinyl)-GMP and polynucleotide-(3')pp(5')G intermediates. There are currently two models for how ... >> More
The RNA ligase RtcB splices broken RNAs with 5'-OH and either 2',3'-cyclic phosphate or 3'-phosphate ends. The 3'-phosphate ligase activity requires GTP and entails the formation of covalent RtcB-(histidinyl)-GMP and polynucleotide-(3')pp(5')G intermediates. There are currently two models for how RtcB executes the strand sealing step. Scheme 1 holds that the RNA 5'-OH end attacks the 3'-phosphorus of the N(3')pp(5')G end to form a 3',5'-phosphodiester and release GMP. Scheme 2 posits that the N(3')pp(5')G end is converted to a 2',3'-cyclic phosphodiester, which is then attacked directly by the 5'-OH RNA end to form a 3',5'-phosphodiester. Here we show that the sealing of a 2',3'-cyclic phosphate end by RtcB requires GTP, is contingent on formation of the RtcB-GMP adduct, and involves a kinetically valid RNA(3')pp(5')G intermediate. Moreover, we find that RtcB catalyzes the hydrolysis of a 2',3'-cyclic phosphate to a 3'-phosphate at a rate that is at least as fast as the rate of ligation. These results weigh in favor of scheme 1. The cyclic phosphodiesterase activity of RtcB depends on GTP and the formation of the RtcB-GMP adduct, signifying that RtcB guanylylation precedes the cyclic phosphodiesterase and 3'-phosphate ligase steps of the RNA splicing pathway. << Less
Nucleic Acids Res. 40:8558-8567(2012) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
Comments
Multi-step reaction: RHEA:68056 + RHEA:68084 + RHEA:68088 + RHEA:68092