Reaction participants Show >> << Hide
- Name help_outline 2-hydroxyoctanoate Identifier CHEBI:133514 Charge -1 Formula C8H15O3 InChIKeyhelp_outline JKRDADVRIYVCCY-UHFFFAOYSA-M SMILEShelp_outline OC(CCCCCC)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,727 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 2-oxooctanoate Identifier CHEBI:176689 Charge -1 Formula C8H13O3 InChIKeyhelp_outline GPPUPQFYDYLTIY-UHFFFAOYSA-M SMILEShelp_outline CCCCCCC(=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O2 Identifier CHEBI:16240 (CAS: 7722-84-1) help_outline Charge 0 Formula H2O2 InChIKeyhelp_outline MHAJPDPJQMAIIY-UHFFFAOYSA-N SMILEShelp_outline [H]OO[H] 2D coordinates Mol file for the small molecule Search links Involved in 452 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:67940 | RHEA:67941 | RHEA:67942 | RHEA:67943 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Identification and characterization of HAOX1, HAOX2, and HAOX3, three human peroxisomal 2-hydroxy acid oxidases.
Jones J.M., Morrell J.C., Gould S.J.
Computer-based approaches identified three distinct human 2-hydroxy acid oxidase genes, HAOX1, HAOX2, and HAOX3, that encode proteins with significant sequence similarity to plant glycolate oxidase, a prototypical 2-hydroxy acid oxidase. The products of these genes are targeted to peroxisomes and ... >> More
Computer-based approaches identified three distinct human 2-hydroxy acid oxidase genes, HAOX1, HAOX2, and HAOX3, that encode proteins with significant sequence similarity to plant glycolate oxidase, a prototypical 2-hydroxy acid oxidase. The products of these genes are targeted to peroxisomes and have 2-hydroxy acid oxidase activities. Each gene displays a distinct tissue-specific pattern of expression, and each enzyme exhibits distinct substrate preferences. HAOX1 is expressed primarily in liver and pancreas and is most active on the two-carbon substrate, glycolate, but is also active on 2-hydroxy fatty acids. HAOX2 is expressed predominantly in liver and kidney and displays highest activity toward 2-hydroxypalmitate. HAOX3 expression was detected only in pancreas, and this enzyme displayed a preference for the medium chain substrate 2-hydroxyoctanoate. These results indicate that all three human 2-hydroxy acid oxidases are involved in the oxidation of 2-hydroxy fatty acids and may also contribute to the general pathway of fatty acid alpha-oxidation. Primary hyperoxaluria type 1 (PH1) is caused by defects in peroxisomal alanine-glyoxylate aminotransferase, the enzyme that normally eliminates intraperoxisomal glyoxylate. The presence of HAOX1 in liver and kidney peroxisomes and the ability of HAOX1 to oxidize glyoxylate to oxalate implicate HAOX1 as a mediator of PH1 pathophysiology. << Less
J. Biol. Chem. 275:12590-12597(2000) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
-
Active site and loop 4 movements within human glycolate oxidase: implications for substrate specificity and drug design.
Murray M.S., Holmes R.P., Lowther W.T.
Human glycolate oxidase (GO) catalyzes the FMN-dependent oxidation of glycolate to glyoxylate and glyoxylate to oxalate, a key metabolite in kidney stone formation. We report herein the structures of recombinant GO complexed with sulfate, glyoxylate, and an inhibitor, 4-carboxy-5-dodecylsulfanyl-1 ... >> More
Human glycolate oxidase (GO) catalyzes the FMN-dependent oxidation of glycolate to glyoxylate and glyoxylate to oxalate, a key metabolite in kidney stone formation. We report herein the structures of recombinant GO complexed with sulfate, glyoxylate, and an inhibitor, 4-carboxy-5-dodecylsulfanyl-1,2,3-triazole (CDST), determined by X-ray crystallography. In contrast to most alpha-hydroxy acid oxidases including spinach glycolate oxidase, a loop region, known as loop 4, is completely visible when the GO active site contains a small ligand. The lack of electron density for this loop in the GO-CDST complex, which mimics a large substrate, suggests that a disordered to ordered transition may occur with the binding of substrates. The conformational flexibility of Trp110 appears to be responsible for enabling GO to react with alpha-hydroxy acids of various chain lengths. Moreover, the movement of Trp110 disrupts a hydrogen-bonding network between Trp110, Leu191, Tyr134, and Tyr208. This loss of interactions is the first indication that active site movements are directly linked to changes in the conformation of loop 4. The kinetic parameters for the oxidation of glycolate, glyoxylate, and 2-hydroxy octanoate indicate that the oxidation of glycolate to glyoxylate is the primary reaction catalyzed by GO, while the oxidation of glyoxylate to oxalate is most likely not relevant under normal conditions. However, drugs that exploit the unique structural features of GO may ultimately prove to be useful for decreasing glycolate and glyoxylate levels in primary hyperoxaluria type 1 patients who have the inability to convert peroxisomal glyoxylate to glycine. << Less
Biochemistry 47:2439-2449(2008) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Experimental and computational investigation of enzyme functional annotations uncovers misannotation in the EC 1.1.3.15 enzyme class.
Rembeza E., Engqvist M.K.M.
Only a small fraction of genes deposited to databases have been experimentally characterised. The majority of proteins have their function assigned automatically, which can result in erroneous annotations. The reliability of current annotations in public databases is largely unknown; experimental ... >> More
Only a small fraction of genes deposited to databases have been experimentally characterised. The majority of proteins have their function assigned automatically, which can result in erroneous annotations. The reliability of current annotations in public databases is largely unknown; experimental attempts to validate the accuracy within individual enzyme classes are lacking. In this study we performed an overview of functional annotations to the BRENDA enzyme database. We first applied a high-throughput experimental platform to verify functional annotations to an enzyme class of S-2-hydroxyacid oxidases (EC 1.1.3.15). We chose 122 representative sequences of the class and screened them for their predicted function. Based on the experimental results, predicted domain architecture and similarity to previously characterised S-2-hydroxyacid oxidases, we inferred that at least 78% of sequences in the enzyme class are misannotated. We experimentally confirmed four alternative activities among the misannotated sequences and showed that misannotation in the enzyme class increased over time. Finally, we performed a computational analysis of annotations to all enzyme classes in the BRENDA database, and showed that nearly 18% of all sequences are annotated to an enzyme class while sharing no similarity or domain architecture to experimentally characterised representatives. We showed that even well-studied enzyme classes of industrial relevance are affected by the problem of functional misannotation. << Less
PLoS Comput. Biol. 17:e1009446-e1009446(2021) [PubMed] [EuropePMC]
This publication is cited by 9 other entries.
-
Plant and animal glycolate oxidases have a common eukaryotic ancestor and convergently duplicated to evolve long-chain 2-hydroxy acid oxidases.
Esser C., Kuhn A., Groth G., Lercher M.J., Maurino V.G.
Glycolate oxidase (GOX) is a crucial enzyme of plant photorespiration. The encoding gene is thought to have originated from endosymbiotic gene transfer between the eukaryotic host and the cyanobacterial endosymbiont at the base of plantae. However, animals also possess GOX activities. Plant and an ... >> More
Glycolate oxidase (GOX) is a crucial enzyme of plant photorespiration. The encoding gene is thought to have originated from endosymbiotic gene transfer between the eukaryotic host and the cyanobacterial endosymbiont at the base of plantae. However, animals also possess GOX activities. Plant and animal GOX belong to the gene family of (L)-2-hydroxyacid-oxidases ((L)-2-HAOX). We find that all (L)-2-HAOX proteins in animals and archaeplastida go back to one ancestral eukaryotic sequence; the sole exceptions are green algae of the chlorophyta lineage. Chlorophyta replaced the ancestral eukaryotic (L)-2-HAOX with a bacterial ortholog, a lactate oxidase that may have been obtained through the primary endosymbiosis at the base of plantae; independent losses of this gene may explain its absence in other algal lineages (glaucophyta, rhodophyta, and charophyta). We also show that in addition to GOX, plants possess (L)-2-HAOX proteins with different specificities for medium- and long-chain hydroxyacids (lHAOX), likely involved in fatty acid and protein catabolism. Vertebrates possess lHAOX proteins acting on similar substrates as plant lHAOX; however, the existence of GOX and lHAOX subfamilies in both plants and animals is not due to shared ancestry but is the result of convergent evolution in the two most complex eukaryotic lineages. On the basis of targeting sequences and predicted substrate specificities, we conclude that the biological role of plantae (L)-2-HAOX in photorespiration evolved by co-opting an existing peroxisomal protein. << Less
Mol. Biol. Evol. 31:1089-1101(2014) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.