Enzymes
UniProtKB help_outline | 4 proteins |
Reaction participants Show >> << Hide
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline N-acetyl-L-glutamine Identifier CHEBI:143879 Charge -1 Formula C7H11N2O4 InChIKeyhelp_outline KSMRODHGGIIXDV-YFKPBYRVSA-M SMILEShelp_outline [O-]C(=O)[C@@H](NC(=O)C)CCC(=O)N 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline acetate Identifier CHEBI:30089 (Beilstein: 1901470; CAS: 71-50-1) help_outline Charge -1 Formula C2H3O2 InChIKeyhelp_outline QTBSBXVTEAMEQO-UHFFFAOYSA-M SMILEShelp_outline CC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 174 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-glutamine Identifier CHEBI:58359 Charge 0 Formula C5H10N2O3 InChIKeyhelp_outline ZDXPYRJPNDTMRX-VKHMYHEASA-N SMILEShelp_outline NC(=O)CC[C@H]([NH3+])C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 75 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:67368 | RHEA:67369 | RHEA:67370 | RHEA:67371 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Family-wide Annotation of Enzymatic Pathways by Parallel In Vivo Metabolomics.
Kim J.T., Li V.L., Terrell S.M., Fischer C.R., Long J.Z.
Enzymes catalyze fundamental biochemical reactions that control cellular and organismal homeostasis. Here we present an approach for de novo biochemical pathway discovery across entire mammalian enzyme families using parallel viral transduction in mice and untargeted liquid chromatography-mass spe ... >> More
Enzymes catalyze fundamental biochemical reactions that control cellular and organismal homeostasis. Here we present an approach for de novo biochemical pathway discovery across entire mammalian enzyme families using parallel viral transduction in mice and untargeted liquid chromatography-mass spectrometry. Applying this method to the M20 peptidases uncovers both known pathways of amino acid metabolism as well as a previously unknown CNDP2-regulated pathway for threonyl dipeptide catabolism. Ablation of CNDP2 in mice elevates threonyl dipeptides across multiple tissues, establishing the physiologic relevance of our biochemical assignments. Taken together, these data underscore the utility of parallel in vivo metabolomics for the family-wide discovery of enzymatic pathways. << Less
Cell Chem. Biol. 26:1623-1629(2019) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.