Reaction participants Show >> << Hide
- Name help_outline malonyl-CoA Identifier CHEBI:57384 Charge -5 Formula C24H33N7O19P3S InChIKeyhelp_outline LTYOQGRJFJAKNA-DVVLENMVSA-I SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 211 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline quercetin 3-O-β-D-glucoside Identifier CHEBI:144437 Charge -1 Formula C21H19O12 InChIKeyhelp_outline OVSQVDMCBVZWGM-QSOFNFLRSA-M SMILEShelp_outline C1=C(C=C(C2=C1OC(=C(C2=O)O[C@H]3[C@@H]([C@H]([C@@H]([C@H](O3)CO)O)O)O)C4=CC=C(C(=C4)O)O)O)[O-] 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,500 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline quercetin 3-O-(6-O-malonyl-β-D-glucoside) Identifier CHEBI:169948 Charge -2 Formula C24H20O15 InChIKeyhelp_outline NBQPHANHNTWDML-UJKBSQBPSA-L SMILEShelp_outline C1=2C(C(=C(OC1=CC(=CC2O)[O-])C3=CC=C(C(=C3)O)O)O[C@H]4[C@@H]([C@H]([C@@H]([C@H](O4)COC(CC([O-])=O)=O)O)O)O)=O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:67340 | RHEA:67341 | RHEA:67342 | RHEA:67343 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Whitefly hijacks a plant detoxification gene that neutralizes plant toxins.
Xia J., Guo Z., Yang Z., Han H., Wang S., Xu H., Yang X., Yang F., Wu Q., Xie W., Zhou X., Dermauw W., Turlings T.C.J., Zhang Y.
Plants protect themselves with a vast array of toxic secondary metabolites, yet most plants serve as food for insects. The evolutionary processes that allow herbivorous insects to resist plant defenses remain largely unknown. The whitefly Bemisia tabaci is a cosmopolitan, highly polyphagous agricu ... >> More
Plants protect themselves with a vast array of toxic secondary metabolites, yet most plants serve as food for insects. The evolutionary processes that allow herbivorous insects to resist plant defenses remain largely unknown. The whitefly Bemisia tabaci is a cosmopolitan, highly polyphagous agricultural pest that vectors several serious plant pathogenic viruses and is an excellent model to probe the molecular mechanisms involved in overcoming plant defenses. Here, we show that, through an exceptional horizontal gene transfer event, the whitefly has acquired the plant-derived phenolic glucoside malonyltransferase gene BtPMaT1. This gene enables whiteflies to neutralize phenolic glucosides. This was confirmed by genetically transforming tomato plants to produce small interfering RNAs that silence BtPMaT1, thus impairing the whiteflies' detoxification ability. These findings reveal an evolutionary scenario whereby herbivores harness the genetic toolkit of their host plants to develop resistance to plant defenses and how this can be exploited for crop protection. << Less
Cell 0:0-0(2021) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.
-
Molecular cloning, characterization, and downregulation of an acyltransferase that catalyzes the malonylation of flavonoid and naphthol glucosides in tobacco cells.
Taguchi G., Shitchi Y., Shirasawa S., Yamamoto H., Hayashida N.
Tobacco cells (Nicotiana tabacum L. Bright Yellow T-13) exposed to harmful naphthols accumulate them as glucosylated and further modified compounds [Taguchi et al. (2003a) Plant Sci. 164, 231-240]. In this study, we identified the accumulated compounds to be 6'-O-malonylated glucosides of naphthol ... >> More
Tobacco cells (Nicotiana tabacum L. Bright Yellow T-13) exposed to harmful naphthols accumulate them as glucosylated and further modified compounds [Taguchi et al. (2003a) Plant Sci. 164, 231-240]. In this study, we identified the accumulated compounds to be 6'-O-malonylated glucosides of naphthols. Cells treated with various phenolic compounds accumulated the flavonoids mainly as malonylglucosides. To clarify the function of this malonylation in tobacco, we isolated the cDNA encoding a malonyltransferase (NtMaT1) from a cDNA library derived from tobacco cells. The heterologous expression of the gene in Escherichia coli revealed that the recombinant enzyme had malonyltransferase activity against several phenolic glucosides such as flavonoid 7-O-glucosides, flavonoid 3-O-glucosides and naphthol glucosides. The substrate preference of the enzyme was similar to that of the tobacco cell extract. Malonylation activity in the transgenic cells markedly decreased with the suppression of the expression of NtMaT1 mRNA in tobacco BY-2 cells by RNA interference. The compounds administered to the transgenic cells were accumulated in the cells as glucosides or other modified compounds in place of malonylglucosides. These results show that NtMaT1 is the main catalyst of malonylation on glucosides of xenobiotic flavonoids and naphthols in tobacco plants. << Less
Plant J. 42:481-491(2005) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.