Enzymes
UniProtKB help_outline | 3,081 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,280 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline Mn2+ Identifier CHEBI:29035 (CAS: 16397-91-4) help_outline Charge 2 Formula Mn InChIKeyhelp_outline WAEMQWOKJMHJLA-UHFFFAOYSA-N SMILEShelp_outline [Mn++] 2D coordinates Mol file for the small molecule Search links Involved in 11 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ADP Identifier CHEBI:456216 (Beilstein: 3783669) help_outline Charge -3 Formula C10H12N5O10P2 InChIKeyhelp_outline XTWYTFMLZFPYCI-KQYNXXCUSA-K SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 841 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phosphate Identifier CHEBI:43474 Charge -2 Formula HO4P InChIKeyhelp_outline NBIIXXVUZAFLBC-UHFFFAOYSA-L SMILEShelp_outline OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 992 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:66820 | RHEA:66821 | RHEA:66822 | RHEA:66823 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
MetaCyc help_outline |
Publications
-
The Golgi PMR1 P-type ATPase of Caenorhabditis elegans. Identification of the gene and demonstration of calcium and manganese transport.
Van Baelen K., Vanoevelen J., Missiaen L., Raeymaekers L., Wuytack F.
In recent years, it has been well established that the Ca(2+) concentration in the lumen of intracellular organelles is a key determinant of cell function. Despite the fact that essential functions of the Golgi apparatus depend on the Ca(2+) and Mn(2+) concentration in its lumen, little is known o ... >> More
In recent years, it has been well established that the Ca(2+) concentration in the lumen of intracellular organelles is a key determinant of cell function. Despite the fact that essential functions of the Golgi apparatus depend on the Ca(2+) and Mn(2+) concentration in its lumen, little is known on the transport system responsible for ion accumulation. The Golgi ion pump PMR1 has been functionally studied only in yeast. In humans, mutations in the orthologous gene ATP2C1 cause Hailey-Hailey disease. We report here the identification of the PMR1 homologue in the model organism Caenorhabditis elegans and after ectopic expression the direct study of its ion transport in permeabilized COS-1 cells. The C. elegans genome is predicted to contain a single PMR1 orthologue on chromosome I. We found evidence for alternative splicing in the 5'-untranslated region, but no indication for the generation of different protein isoforms. C. elegans PMR1 overexpressed in COS-1 cells transports Ca(2+) and Mn(2+) with high affinity into the Golgi apparatus in a thapsigargin-insensitive manner. Part of the accumulated Ca(2+) can be released by inositol 1,4,5-trisphosphate, in agreement with the idea that the Golgi apparatus is an inositol 1,4,5-trisphosphate-sensitive Ca(2+) store. << Less
-
A novel P1B-type Mn2+ transporting ATPase is required for secreted protein metallation in Mycobacteria.
Padilla-Benavides T., Long J.E., Raimunda D., Sassetti C.M., Arguello J.M.
Transition metals are central for bacterial virulence and host defense. P(1B)-ATPases are responsible for cytoplasmic metal efflux and play roles either in limiting cytosolic metal concentrations or in the maturation of secreted metalloproteins. The P(1B)-ATPase, CtpC, is required for Mycobacteriu ... >> More
Transition metals are central for bacterial virulence and host defense. P(1B)-ATPases are responsible for cytoplasmic metal efflux and play roles either in limiting cytosolic metal concentrations or in the maturation of secreted metalloproteins. The P(1B)-ATPase, CtpC, is required for Mycobacterium tuberculosis survival in a mouse model (Sassetti, C. M., and Rubin, E. J. (2003) Genetic requirements for mycobacterial survival during infection. Proc. Natl. Acad. Sci. U.S.A. 100, 12989-12994). CtpC prevents Zn(2+) toxicity, suggesting a role in Zn(2+) export from the cytosol (Botella, H., Peyron, P., Levillain, F., Poincloux, R., Poquet, Y., Brandli, I., Wang, C., Tailleux, L., Tilleul, S., Charriere, G. M., Waddell, S. J., Foti, M., Lugo-Villarino, G., Gao, Q., Maridonneau-Parini, I., Butcher, P. D., Castagnoli, P. R., Gicquel, B., de Chastellièr, C., and Neyrolles, O. (2011) Mycobacterial P1-type ATPases mediate resistance to zinc poisoning in human macrophages. Cell Host Microbe 10, 248-259). However, key metal-coordinating residues and the overall structure of CtpC are distinct from Zn(2+)-ATPases. We found that isolated CtpC has metal-dependent ATPase activity with a strong preference for Mn(2+) over Zn(2+). In vivo, CtpC is unable to complement Escherichia coli lacking a functional Zn(2+)-ATPase. Deletion of M. tuberculosis or Mycobacterium smegmatis ctpC leads to cytosolic Mn(2+) accumulation but no alterations in other metals levels. Whereas ctpC-deficient M. tuberculosis is sensitive to extracellular Zn(2+), the M. smegmatis mutant is not. Both ctpC mutants are sensitive to oxidative stress, which might explain the Zn(2+)-sensitive phenotype of the M. tuberculosis ctpC mutant. CtpC is a high affinity/slow turnover ATPase, suggesting a role in protein metallation. Consistent with this hypothesis, mutation of CtpC leads to a decrease of Mn(2+) bound to secreted proteins and of the activity of secreted Fe/Mn-superoxide dismutase, particularly in M. smegmatis. Alterations in the assembly of metalloenzymes involved in redox stress response might explain the sensitivity of M. tuberculosis ctpC mutants to oxidative stress and growth and persistence defects in mice infection models. << Less
J. Biol. Chem. 288:11334-11347(2013) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Identification of a gain-of-function mutation in a Golgi P-type ATPase that enhances Mn2+ efflux and protects against toxicity.
Mukhopadhyay S., Linstedt A.D.
P-type ATPases transport a wide array of ions, regulate diverse cellular processes, and are implicated in a number of human diseases. However, mechanisms that increase ion transport by these ubiquitous proteins are not known. SPCA1 is a P-type pump that transports Mn(2+) from the cytosol into the ... >> More
P-type ATPases transport a wide array of ions, regulate diverse cellular processes, and are implicated in a number of human diseases. However, mechanisms that increase ion transport by these ubiquitous proteins are not known. SPCA1 is a P-type pump that transports Mn(2+) from the cytosol into the Golgi. We developed an intra-Golgi Mn(2+) sensor and used it to screen for mutations introduced in SPCA1, on the basis of its predicted structure, which could increase its Mn(2+) pumping activity. Remarkably, a point mutation (Q747A) predicted to increase the size of its ion permeation cavity enhanced the sensor response and a compensatory mutation restoring the cavity to its original size abolished this effect. In vivo and in vitro Mn(2+) transport assays confirmed the hyperactivity of SPCA1-Q747A. Furthermore, increasing Golgi Mn(2+) transport by expression of SPCA1-Q747A increased cell viability upon Mn(2+) exposure, supporting the therapeutic potential of increased Mn(2+) uptake by the Golgi in the management of Mn(2+)-induced neurotoxicity. << Less
Proc. Natl. Acad. Sci. U.S.A. 108:858-863(2011) [PubMed] [EuropePMC]