Reaction participants Show >> << Hide
- Name help_outline an inositol-1-phospho-N-(2-hydroxyacyl)-4R-hydroxysphingoid base Identifier CHEBI:74596 Charge -1 Formula C12H21NO13PR2 SMILEShelp_outline O[C@H]([*])[C@@H](O)[C@H](COP([O-])(=O)O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](O)[C@H]1O)NC(=O)C(O)[*] 2D coordinates Mol file for the small molecule Search links Involved in 7 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline GDP-α-D-mannose Identifier CHEBI:57527 (Beilstein: 6630718) help_outline Charge -2 Formula C16H23N5O16P2 InChIKeyhelp_outline MVMSCBBUIHUTGJ-GDJBGNAASA-L SMILEShelp_outline Nc1nc2n(cnc2c(=O)[nH]1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)O[C@H]2O[C@H](CO)[C@@H](O)[C@H](O)[C@@H]2O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 54 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline an α-D-mannosylinositol-1-phospho-N-(2-hydroxyacyl)-4R-hydroxysphingoid base Identifier CHEBI:167046 Charge -1 Formula C18H31NO18PR2 SMILEShelp_outline *[C@H]([C@H]([C@H](COP([O-])(=O)O[C@H]1[C@@H]([C@H]([C@@H]([C@H]([C@H]1O)O)O)O)O[C@@H]2[C@H]([C@H]([C@@H]([C@H](O2)CO)O)O)O)NC(=O)C(*)O)O)O 2D coordinates Mol file for the small molecule Search links Involved in 6 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline GDP Identifier CHEBI:58189 Charge -3 Formula C10H12N5O11P2 InChIKeyhelp_outline QGWNDRXFNXRZMB-UUOKFMHZSA-K SMILEShelp_outline Nc1nc2n(cnc2c(=O)[nH]1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 184 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:66292 | RHEA:66293 | RHEA:66294 | RHEA:66295 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
Specific form(s) of this reaction
More general form(s) of this reaction
Publications
-
SUR1 (CSG1/BCL21), a gene necessary for growth of Saccharomyces cerevisiae in the presence of high Ca2+ concentrations at 37 degrees C, is required for mannosylation of inositolphosphorylceramide.
Beeler T.J., Fu D., Rivera J., Monaghan E., Gable K., Dunn T.M.
Saccharomyces cerevisiae cells require two genes, CSG1/SUR1 and CSG2, for growth in 50 mM Ca2+, but not 50 mM Sr2+. CSG2 was previously shown to be required for the mannosylation of inositolphosphorylceramide (IPC) to form mannosylinositolphosphorylceramide (MIPC). Here we demonstrate that SUR1/CS ... >> More
Saccharomyces cerevisiae cells require two genes, CSG1/SUR1 and CSG2, for growth in 50 mM Ca2+, but not 50 mM Sr2+. CSG2 was previously shown to be required for the mannosylation of inositolphosphorylceramide (IPC) to form mannosylinositolphosphorylceramide (MIPC). Here we demonstrate that SUR1/CSG1 is both genetically and biochemically related to CSG2. Like CSG2, SUR1/CSG1 is required for IPC mannosylation. A 93-amino acid stretch of Csg1p shows 29% identity with the alpha-1, 6-mannosyltransferase encoded by OCH1. The SUR1/CSG1 gene is a dose-dependent suppressor of the Ca(2+)-sensitive phenotype of the csg2 mutant, but overexpression of CSG2 does not suppress the Ca2+ sensitivity of the csg1 mutant. The csg1 and csg2 mutants display normal growth in YPD, indicating that mannosylation of sphingolipids is not essential. Increased osmolarity of the growth medium increases the Ca2+ tolerance of csg1 and csg2 mutant cells, suggesting that altered cell wall synthesis causes Ca(2+)-induced death. Hydroxylation of IPC-C to form IPC-D requires CCC2, a gene encoding an intracellular Cu2+ transporter. Increased expression of CCC2 or increased Cu2+ concentration in the growth medium enhances the Ca2+ tolerance of csg1 mutants, suggesting that accumulation of IPC-C renders csg1 cells Ca2+ sensitive. << Less
Mol. Gen. Genet. 255:570-579(1997) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Csg1p and newly identified Csh1p function in mannosylinositol phosphorylceramide synthesis by interacting with Csg2p.
Uemura S., Kihara A., Inokuchi J., Igarashi Y.
Csg1p and Csg2p have been shown to be involved in the synthesis of mannosylinositol phosphorylceramide (MIPC) from inositol phosphorylceramide. YBR161w, termed CSH1 here, encodes a protein that exhibits a strong similarity to Csg1p. To examine whether Csh1p also functions in MIPC synthesis, we per ... >> More
Csg1p and Csg2p have been shown to be involved in the synthesis of mannosylinositol phosphorylceramide (MIPC) from inositol phosphorylceramide. YBR161w, termed CSH1 here, encodes a protein that exhibits a strong similarity to Csg1p. To examine whether Csh1p also functions in MIPC synthesis, we performed a [3H]dihydrosphingosine labeling experiment. Deltacsg1 cells exhibited only a reduction in the synthesis of mannosylated sphingolipids compared with wild-type cells, whereas the Deltacsg1 Deltacsh1 double deletion mutant exhibited a total loss. These results indicated that Csg1p and Csh1p have redundant functions in MIPC synthesis. Analyses using Deltacsg1 and Deltacsh1 cells in the Deltaipt1, Deltasur2, or Deltascs7 genetic background demonstrated that Csh1p has a different substrate specificity from Csg1p. We also revealed that Csg2p interacts with both Csg1p and Csh1p. Deletion of the CSG2 gene reduced the Csg1p activity and abolished the Csh1p activity. These results suggested that two distinct inositol phosphorylceramide mannosyltransferase complexes, Csg1p-Csg2p and Csh1p-Csg2p, exist. << Less
J. Biol. Chem. 278:45049-45055(2003) [PubMed] [EuropePMC]
This publication is cited by 7 other entries.