Enzymes
UniProtKB help_outline | 2 proteins |
Reaction participants Show >> << Hide
- Name help_outline 3-oxododecanoyl-CoA Identifier CHEBI:62615 Charge -4 Formula C33H52N7O18P3S InChIKeyhelp_outline HQANBZHVWIDNQZ-GMHMEAMDSA-J SMILEShelp_outline CCCCCCCCCC(=O)CC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 3-oxododecanoate Identifier CHEBI:29743 Charge -1 Formula C12H21O3 InChIKeyhelp_outline DZHSPYMHDVROSM-UHFFFAOYSA-M SMILEShelp_outline CCCCCCCCCC(=O)CC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,500 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:65216 | RHEA:65217 | RHEA:65218 | RHEA:65219 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Genetic replacement of tesB with PTE1 affects chain-length proportions of 3-hydroxyalkanoic acids produced through beta-oxidation of oleic acid in Escherichia coli.
Seto Y., Kang J., Ming L., Habu N., Nihei K., Ueda S., Maeda I.
Acyl-CoA thioesterase II (TesB), which catalyzes hydrolysis of acyl-CoAs to free fatty acids and CoA, is involved in 3-hydroxyalkanoic acid production in Escherichia coli. Effects of genetic replacement of tesB with Saccharomyces cerevisiae acyl-CoA thioesterase gene PTE1 on 3-hydroxyalkanoic acid ... >> More
Acyl-CoA thioesterase II (TesB), which catalyzes hydrolysis of acyl-CoAs to free fatty acids and CoA, is involved in 3-hydroxyalkanoic acid production in Escherichia coli. Effects of genetic replacement of tesB with Saccharomyces cerevisiae acyl-CoA thioesterase gene PTE1 on 3-hydroxyalkanoic acid production from oleic acid through β-oxidation were examined. Kinetic analyses using β-oxidation intermediates showed that hydrolyses of C4-acyl substrates are more efficient by PTE1 than by TesB. Deletion of tesB in E. coli decreased 3-hydroxybutyric acid, 3-hydroxyhexanoic acid, 3-hydroxyoctanoic acid, and hexanoic acid in medium after cultivation with oleic acid as a sole carbon source. Hexanoic acid concentration was much lower than those of 3-hydroxyacids. In genetic complementation of tesB deletion, use of PTE1, instead of tesB, affected proportions of the 3-hydroxyalkanoic acids. Proportion of 3-hydroxybutyric acid was higher in a PTE1-complemented strain than in a tesB-complemented strain, while proportions of 3-hydroxyhexanoic acid and 3-hydroxyoctanoic acid markedly increased in the tesB-complemented strain. Proportion of 3-hydroxyoctanoic acid did not significantly increase in the PTE1-complemented strain. These data indicate possibilities of 3-hydroxyalkanoic acid production from oleic acid through β-oxidation and customization of their chain-length proportions by genetic replacement of tesB with a gene encoding acyl-CoA thioesterase with a different kinetic property. << Less
J. Biosci. Bioeng. 110:392-396(2010) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.