Reaction participants Show >> << Hide
- Name help_outline AH2 Identifier CHEBI:17499 Charge 0 Formula RH2 SMILEShelp_outline *([H])[H] 2D coordinates Mol file for the small molecule Search links Involved in 2,799 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,709 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline preaustinoid A Identifier CHEBI:69023 Charge 0 Formula C26H36O6 InChIKeyhelp_outline IRPHRMHQEPXQQF-RFMSQVAGSA-N SMILEShelp_outline [H][C@]12CC[C@@]3(C)[C@@]([H])(C[C@]4(C)C(=C)[C@@]3(C(=O)OC)C(=O)[C@@](C)(O)C4=O)[C@]1(C)CCC(=O)C2(C)C 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline A Identifier CHEBI:13193 Charge Formula R SMILEShelp_outline * 2D coordinates Mol file for the small molecule Search links Involved in 2,870 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline preaustinoid A1 Identifier CHEBI:69026 Charge 0 Formula C26H36O7 InChIKeyhelp_outline XBLDTXYFLHSWHN-RFMSQVAGSA-N SMILEShelp_outline [H][C@@]12C[C@]3(C)C(=C)[C@@](C(=O)OC)(C(=O)[C@@](C)(O)C3=O)[C@@]1(C)CC[C@@]1([H])[C@@]2(C)CCC(=O)OC1(C)C 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:65168 | RHEA:65169 | RHEA:65170 | RHEA:65171 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Publications
-
Discovery of key dioxygenases that diverged the paraherquonin and acetoxydehydroaustin pathways in Penicillium brasilianum.
Matsuda Y., Iwabuchi T., Fujimoto T., Awakawa T., Nakashima Y., Mori T., Zhang H., Hayashi F., Abe I.
Paraherquonin (1), a fungal meroterpenoid produced by Penicillium brasilianum NBRC 6234, possesses a unique, highly congested hexacyclic molecular architecture. Here we identified the biosynthetic gene cluster of 1 (the prh cluster) and elucidated the pathway up to berkeleydione (2), which serves ... >> More
Paraherquonin (1), a fungal meroterpenoid produced by Penicillium brasilianum NBRC 6234, possesses a unique, highly congested hexacyclic molecular architecture. Here we identified the biosynthetic gene cluster of 1 (the prh cluster) and elucidated the pathway up to berkeleydione (2), which serves as the key intermediate for the biosynthesis of 1 as well as many other meroterpenoids. Interestingly, the nonheme iron and α-ketoglutarate-dependent dioxygenase PrhA constructs the cycloheptadiene moiety to afford 2 from preaustinoid A1 (6), probably via the homoallyl-homoallyl radical rearrangement. Additionally, another fungal strain, P. brasilianum MG11, which produces acetoxydehydroaustin instead of 1, was found to have a gene cluster nearly identical to the prh cluster. The dioxygenase encoded by the cluster shares 92% sequence identity with PrhA, and also accepts 6 but produces preaustinoid A3 (17) with a spiro-lactone system, generating a diverging point for the two different meroterpenoid pathways in the same species. << Less
J. Am. Chem. Soc. 138:12671-12677(2016) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.
-
Spiro-ring formation is catalyzed by a multifunctional dioxygenase in austinol biosynthesis.
Matsuda Y., Awakawa T., Wakimoto T., Abe I.
Austinol, a fungal meroterpenoid derived from 3,5-dimethylorsellinic acid, has a unique chemical structure with a remarkable spiro-lactone ring system. Despite the recent identification of its biosynthetic gene cluster and targeted gene-deletion experiments, the process for the conversion of proto ... >> More
Austinol, a fungal meroterpenoid derived from 3,5-dimethylorsellinic acid, has a unique chemical structure with a remarkable spiro-lactone ring system. Despite the recent identification of its biosynthetic gene cluster and targeted gene-deletion experiments, the process for the conversion of protoaustinoid A (2), the first tetracyclic biosynthetic intermediate, to the spiro-lactone preaustinoid A3 (7) has remained enigmatic. Here we report the mechanistic details of the enzyme-catalyzed, stereospecific spiro-lactone ring-forming reaction, which is catalyzed by a non-heme iron-dependent dioxygenase, AusE, along with two flavin monooxygenases, the 5'-hydroxylase AusB and the Baeyer-Villiger monooxygenase AusC. Remarkably, AusE is a multifunctional dioxygenase that is responsible for the iterative oxidation steps, including the oxidative spiro-ring-forming reaction, to produce the austinol scaffold. << Less
J. Am. Chem. Soc. 135:10962-10965(2013) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.