Enzymes
UniProtKB help_outline | 2,570 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline UDP Identifier CHEBI:58223 Charge -3 Formula C9H11N2O12P2 InChIKeyhelp_outline XCCTYIAWTASOJW-XVFCMESISA-K SMILEShelp_outline O[C@@H]1[C@@H](COP([O-])(=O)OP([O-])([O-])=O)O[C@H]([C@@H]1O)n1ccc(=O)[nH]c1=O 2D coordinates Mol file for the small molecule Search links Involved in 576 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phosphate Identifier CHEBI:43474 Charge -2 Formula HO4P InChIKeyhelp_outline NBIIXXVUZAFLBC-UHFFFAOYSA-L SMILEShelp_outline OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 992 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline UMP Identifier CHEBI:57865 (Beilstein: 3570858) help_outline Charge -2 Formula C9H11N2O9P InChIKeyhelp_outline DJJCXFVJDGTHFX-XVFCMESISA-L SMILEShelp_outline O[C@@H]1[C@@H](COP([O-])([O-])=O)O[C@H]([C@@H]1O)n1ccc(=O)[nH]c1=O 2D coordinates Mol file for the small molecule Search links Involved in 53 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:64876 | RHEA:64877 | RHEA:64878 | RHEA:64879 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
Reactome help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Gene ytkD of Bacillus subtilis encodes an atypical nucleoside triphosphatase member of the Nudix hydrolase superfamily.
Xu W., Jones C.R., Dunn C.A., Bessman M.J.
Gene ytkD of Bacillus subtilis, a member of the Nudix hydrolase superfamily, has been cloned and expressed in Escherichia coli. The purified protein has been characterized as a nucleoside triphosphatase active on all of the canonical ribo- and deoxyribonucleoside triphosphates. Whereas all other n ... >> More
Gene ytkD of Bacillus subtilis, a member of the Nudix hydrolase superfamily, has been cloned and expressed in Escherichia coli. The purified protein has been characterized as a nucleoside triphosphatase active on all of the canonical ribo- and deoxyribonucleoside triphosphates. Whereas all other nucleoside triphosphatase members of the superfamily release inorganic pyrophosphate and the cognate nucleoside monophosphate, YtkD hydrolyses nucleoside triphosphates in a stepwise fashion through the diphosphate to the monophosphate, releasing two molecules of inorganic orthophosphate. Contrary to a previous report, our enzymological and genetic studies indicate that ytkD is not an orthologue of E. coli mutT. << Less
J. Bacteriol. 186:8380-8384(2004) [PubMed] [EuropePMC]
This publication is cited by 32 other entries.
-
ire-1-dependent transcriptional up-regulation of a lumenal uridine diphosphatase from Caenorhabditis elegans.
Uccelletti D., O'Callaghan C., Berninsone P., Zemtseva I., Abeijon C., Hirschberg C.B.
Lumenal ecto-nucleoside tri- and di-phosphohydrolases (ENTPDases) of the secretory pathway of eukaryotes hydrolyze nucleoside diphosphates resulting from glycosyltransferase-mediated reactions, yielding nucleoside monophosphates. The latter are weaker inhibitors of glycosyltransferases than the fo ... >> More
Lumenal ecto-nucleoside tri- and di-phosphohydrolases (ENTPDases) of the secretory pathway of eukaryotes hydrolyze nucleoside diphosphates resulting from glycosyltransferase-mediated reactions, yielding nucleoside monophosphates. The latter are weaker inhibitors of glycosyltransferases than the former and are also antiporters for the transport of nucleotide sugars from the cytosol to the endoplasmic reticulum (ER) and Golgi apparatus (GA) lumen. Here we describe the presence of two cation-dependent nucleotide phosphohydrolase activities in membranes of Caenorhabditis elegans: one, UDA-1, is a UDP/GDPase encoded by the gene uda-1, whereas the other is an apyrase encoded by the gene ntp-1. UDA-1 shares significant amino acid sequence similarity to yeast GA Gda1p and mammalian UDP/GDPases and has a lumenal active site in vesicles displaying an intermediate density between those of the ER and GA when expressed in S. cerevisiae. NTP-1 expressed in COS-7 cells appeared to localize to the GA. The transcript of uda-1 but not those of two other C. elegans ENTPDase mRNAs (ntp-1 and mig-23) was induced up to 3.5-fold by high temperature, tunicamycin, and ethanol. The same effectors triggered the unfolded protein response as shown by the induction of expression of green fluorescent protein under the control of the BiP chaperone promoter and the UDP-glucose:glycoprotein glucosyltransferase. Up-regulation of uda-1 did not occur in ire-1-deficient mutants, demonstrating the role of this ER stress sensor in this event. We hypothesize that up-regulation of uda-1 favors hydrolysis of the glucosyltransferase inhibitory product UDP to UMP, and that the latter product then exits the lumen of the ER or pre-GA compartment in a coupled exchange with the entry of UDP-glucose, thereby further relieving ER stress by favoring protein re-glycosylation. << Less
J. Biol. Chem. 279:27390-27398(2004) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
CD39L2, a gene encoding a human nucleoside diphosphatase, predominantly expressed in the heart.
Yeung G., Mulero J.J., McGowan D.W., Bajwa S.S., Ford J.E.
E-NTPDases are extracellular enzymes that hydrolyze nucleotides. The human E-NTPDase gene family currently consists of five reported members (CD39, CD39L1, CD39L2, CD39L3, and CD39L4). Both membrane-bound and secreted family members have been predicted by encoded transmembrane and leader peptide m ... >> More
E-NTPDases are extracellular enzymes that hydrolyze nucleotides. The human E-NTPDase gene family currently consists of five reported members (CD39, CD39L1, CD39L2, CD39L3, and CD39L4). Both membrane-bound and secreted family members have been predicted by encoded transmembrane and leader peptide motifs. In this report, we demonstrate that the human CD39L2 gene is expressed predominantly in the heart. In situ hybridization results from heart indicate that the CD39L2 message is expressed in muscle and capillary endothelial cells. We also show that the CD39L2 gene encodes an extracellular E-NTPDase. Flow cytometric experiments show that transiently expressed CD39L2 is present on the surface of COS-7 cells. Transfected cells also produce recombinant glycosylated protein in the medium, and this process can be blocked by brefeldin A, an inhibitor of the mammalian secretory pathway. The enzymology of CD39L2 shows characteristic features of a typical E-NTPDase, but with a much higher degree of specificity for NDPs over NTPs as enzymatic substrates. The kinetics of the ADPase activity exhibit positive cooperativity. The predominance of CD39L2 expression in the heart supports a functional role in regulating platelet activation and recruitment in this organ. << Less
Biochemistry 39:12916-12923(2000) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
Comments
Possibly: RHEA:64876 part of RHEA:64896 (PMID:15576788)