Enzymes
UniProtKB help_outline | 1 proteins |
Reaction participants Show >> << Hide
- Name help_outline (E)-4-coumaraldehyde Identifier CHEBI:28353 (CAS: 2538-87-6) help_outline Charge 0 Formula C9H8O2 InChIKeyhelp_outline CJXMVKYNVIGQBS-OWOJBTEDSA-N SMILEShelp_outline Oc1ccc(cc1)\C=C\C=O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,500 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADP+ Identifier CHEBI:58349 Charge -3 Formula C21H25N7O17P3 InChIKeyhelp_outline XJLXINKUBYWONI-NNYOXOHSSA-K SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,285 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (E)-4-coumaroyl-CoA Identifier CHEBI:85008 Charge -4 Formula C30H38N7O18P3S InChIKeyhelp_outline DMZOKBALNZWDKI-MATMFAIHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)\C=C\c1ccc(O)cc1 2D coordinates Mol file for the small molecule Search links Involved in 17 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADPH Identifier CHEBI:57783 (Beilstein: 10411862) help_outline Charge -4 Formula C21H26N7O17P3 InChIKeyhelp_outline ACFIXJIJDZMPPO-NNYOXOHSSA-J SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,279 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:64652 | RHEA:64653 | RHEA:64654 | RHEA:64655 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Structural studies of cinnamoyl-CoA reductase and cinnamyl-alcohol dehydrogenase, key enzymes of monolignol biosynthesis.
Pan H., Zhou R., Louie G.V., Muhlemann J.K., Bomati E.K., Bowman M.E., Dudareva N., Dixon R.A., Noel J.P., Wang X.
The enzymes cinnamoyl-CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) catalyze the two key reduction reactions in the conversion of cinnamic acid derivatives into monolignol building blocks for lignin polymers in plant cell walls. Here, we describe detailed functional and structural a ... >> More
The enzymes cinnamoyl-CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) catalyze the two key reduction reactions in the conversion of cinnamic acid derivatives into monolignol building blocks for lignin polymers in plant cell walls. Here, we describe detailed functional and structural analyses of CCRs from Medicago truncatula and Petunia hybrida and of an atypical CAD (CAD2) from M. truncatula. These enzymes are closely related members of the short-chain dehydrogenase/reductase (SDR) superfamily. Our structural studies support a reaction mechanism involving a canonical SDR catalytic triad in both CCR and CAD2 and an important role for an auxiliary cysteine unique to CCR. Site-directed mutants of CAD2 (Phe226Ala and Tyr136Phe) that enlarge the phenolic binding site result in a 4-to 10-fold increase in activity with sinapaldehyde, which in comparison to the smaller coumaraldehyde and coniferaldehyde substrates is disfavored by wild-type CAD2. This finding demonstrates the potential exploitation of rationally engineered forms of CCR and CAD2 for the targeted modification of monolignol composition in transgenic plants. Thermal denaturation measurements and structural comparisons of various liganded and unliganded forms of CCR and CAD2 highlight substantial conformational flexibility of these SDR enzymes, which plays an important role in the establishment of catalytically productive complexes of the enzymes with their NADPH and phenolic substrates. << Less
Plant Cell 26:3709-3727(2014) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.
-
Distinct cinnamoyl CoA reductases involved in parallel routes to lignin in Medicago truncatula.
Zhou R., Jackson L., Shadle G., Nakashima J., Temple S., Chen F., Dixon R.A.
Cinnamoyl CoA reductases (CCR) convert hydroxycinnamoyl CoA esters to their corresponding cinnamyl aldehydes in monolignol biosynthesis. We identified two CCR genes in the model legume Medicago truncatula. CCR1 exhibits preference for feruloyl CoA, but CCR2 prefers caffeoyl and 4-coumaroyl CoAs, e ... >> More
Cinnamoyl CoA reductases (CCR) convert hydroxycinnamoyl CoA esters to their corresponding cinnamyl aldehydes in monolignol biosynthesis. We identified two CCR genes in the model legume Medicago truncatula. CCR1 exhibits preference for feruloyl CoA, but CCR2 prefers caffeoyl and 4-coumaroyl CoAs, exhibits sigmoidal kinetics with these substrates, and is substrate-inhibited by feruloyl and sinapoyl CoAs. M. truncatula lines harboring transposon insertions in CCR1 exhibit drastically reduced growth and lignin content, whereas CCR2 knockouts grow normally with moderate reduction in lignin levels. CCR1 fully and CCR2 partially complement the irregular xylem gene 4 CCR mutation of Arabidopsis. The expression of caffeoyl CoA 3-O-methyltransferase (CCoAOMT) is up-regulated in CCR2 knockout lines; conversely, knockout of CCoAOMT up-regulates CCR2. These observations suggest that CCR2 is involved in a route to monolignols in Medicago whereby coniferaldehyde is formed via caffeyl aldehyde which then is 3-O-methylated by caffeic acid O-methyltransferase. << Less
Proc. Natl. Acad. Sci. U.S.A. 107:17803-17808(2010) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.