Enzymes
UniProtKB help_outline | 1 proteins |
Reaction participants Show >> << Hide
- Name help_outline 2-hydroxyethane-1-sulfonate Identifier CHEBI:61904 Charge -1 Formula C2H5O4S InChIKeyhelp_outline SUMDYPCJJOFFON-UHFFFAOYSA-M SMILEShelp_outline OCCS([O-])(=O)=O 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline Na+ Identifier CHEBI:29101 (CAS: 17341-25-2) help_outline Charge 1 Formula Na InChIKeyhelp_outline FKNQFGJONOIPTF-UHFFFAOYSA-N SMILEShelp_outline [Na+] 2D coordinates Mol file for the small molecule Search links Involved in 257 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:64584 | RHEA:64585 | RHEA:64586 | RHEA:64587 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Publications
-
A glycyl radical enzyme enables hydrogen sulfide production by the human intestinal bacterium Bilophila wadsworthia.
Peck S.C., Denger K., Burrichter A., Irwin S.M., Balskus E.P., Schleheck D.
Hydrogen sulfide (H<sub>2</sub>S) production in the intestinal microbiota has many contributions to human health and disease. An important source of H<sub>2</sub>S in the human gut is anaerobic respiration of sulfite released from the abundant dietary and host-derived organic sulfonate substrate i ... >> More
Hydrogen sulfide (H<sub>2</sub>S) production in the intestinal microbiota has many contributions to human health and disease. An important source of H<sub>2</sub>S in the human gut is anaerobic respiration of sulfite released from the abundant dietary and host-derived organic sulfonate substrate in the gut, taurine (2-aminoethanesulfonate). However, the enzymes that allow intestinal bacteria to access sulfite from taurine have not yet been identified. Here we decipher the complete taurine desulfonation pathway in <i>Bilophila wadsworthia</i> 3.1.6 using differential proteomics, in vitro reconstruction with heterologously produced enzymes, and identification of critical intermediates. An initial deamination of taurine to sulfoacetaldehyde by a known taurine:pyruvate aminotransferase is followed, unexpectedly, by reduction of sulfoacetaldehyde to isethionate (2-hydroxyethanesulfonate) by an NADH-dependent reductase. Isethionate is then cleaved to sulfite and acetaldehyde by a previously uncharacterized glycyl radical enzyme (GRE), isethionate sulfite-lyase (IslA). The acetaldehyde produced is oxidized to acetyl-CoA by a dehydrogenase, and the sulfite is reduced to H<sub>2</sub>S by dissimilatory sulfite reductase. This unique GRE is also found in <i>Desulfovibrio desulfuricans</i> DSM642 and <i>Desulfovibrio alaskensis</i> G20, which use isethionate but not taurine; corresponding knockout mutants of <i>D. alaskensis</i> G20 did not grow with isethionate as the terminal electron acceptor. In conclusion, the novel radical-based C-S bond-cleavage reaction catalyzed by IslA diversifies the known repertoire of GRE superfamily enzymes and enables the energy metabolism of <i>B. wadsworthia</i> This GRE is widely distributed in gut bacterial genomes and may represent a novel target for control of intestinal H<sub>2</sub>S production. << Less
Proc. Natl. Acad. Sci. U.S.A. 116:3171-3176(2019) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.