Enzymes
UniProtKB help_outline | 3 proteins |
Reaction participants Show >> << Hide
- Name help_outline 3,8,9,10-tetrahydroxy-6-methyl-1,4-dihydroanthracen-1-one Identifier CHEBI:150020 Charge 0 Formula C15H12O5 InChIKeyhelp_outline LJRSVKUSUARDIJ-UHFFFAOYSA-N SMILEShelp_outline C1=C(C=C(C2=C1C(=C3C(=C2O)C(C=C(C3)O)=O)O)O)C 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADPH Identifier CHEBI:57783 (Beilstein: 10411862) help_outline Charge -4 Formula C21H26N7O17P3 InChIKeyhelp_outline ACFIXJIJDZMPPO-NNYOXOHSSA-J SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,288 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (3R)-3,8,9,10-tetrahydroxy-6-methyl-1,2,3,4-tetrahydroanthracen-1-one Identifier CHEBI:150021 Charge 0 Formula C15H14O5 InChIKeyhelp_outline KKXGLTXTYPCGPF-SSDOTTSWSA-N SMILEShelp_outline C=1C(=CC(=C2C1C(=C3C(=C2O)C(C[C@@H](C3)O)=O)O)O)C 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADP+ Identifier CHEBI:58349 Charge -3 Formula C21H25N7O17P3 InChIKeyhelp_outline XJLXINKUBYWONI-NNYOXOHSSA-K SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,294 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:64292 | RHEA:64293 | RHEA:64294 | RHEA:64295 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Publications
-
Tautomers of anthrahydroquinones: enzymatic reduction and implications for chrysophanol, monodictyphenone, and related xanthone biosyntheses.
Schaetzle M.A., Husain S.M., Ferlaino S., Mueller M.
Reduction of emodin by sodium dithionite resulted in the formation of two tautomeric forms of emodin hydroquinone. Subsequent conversion by the short-chain dehydrogenase/reductase (SDR) MdpC into the corresponding 3-hydroxy-3,4-dihydroanthracen-1(2H)-one implies that deoxygenation is the first ste ... >> More
Reduction of emodin by sodium dithionite resulted in the formation of two tautomeric forms of emodin hydroquinone. Subsequent conversion by the short-chain dehydrogenase/reductase (SDR) MdpC into the corresponding 3-hydroxy-3,4-dihydroanthracen-1(2H)-one implies that deoxygenation is the first step in monodictyphenone biosynthesis. Implications for chrysophanol formation as well as reaction sequences in the related xanthone, ergochrome, and bianthraquinone biosyntheses are discussed. << Less
J. Am. Chem. Soc. 134:14742-14745(2012) [PubMed] [EuropePMC]
-
New insights into the conversion of versicolorin A in the biosynthesis of aflatoxin B1.
Conradt D., Schaetzle M.A., Haas J., Townsend C.A., Mueller M.
A crucial and enigmatic step in the complex biosynthesis of aflatoxin B1 is the oxidative rearrangement of versicolorin A to demethylsterigmatocystin. This step is thought to proceed by an oxidation-reduction-oxidation sequence, in which the NADPH-dependent oxidoreductase AflM catalyzes the enclos ... >> More
A crucial and enigmatic step in the complex biosynthesis of aflatoxin B1 is the oxidative rearrangement of versicolorin A to demethylsterigmatocystin. This step is thought to proceed by an oxidation-reduction-oxidation sequence, in which the NADPH-dependent oxidoreductase AflM catalyzes the enclosed reduction step. AflM from Aspergillus parasiticus, after heterologous production in E. coli and purification, however, catalyzed the reduction of the hydroquinoid form of the starting compound versicolorin A (25% conversion) to a so far unknown product of aflatoxin biosynthesis. The asymmetric reduction of emodin hydroquinone to (R)-3,8,9,10-tetrahydroxy-6-methyl-3,4-dihydroanthracen-1(2H)-one (up to 82% for AflM) has also been observed in previous studies using MdpC from Aspergillus nidulans (monodictyphenone biosynthetic gene cluster). The first (nonenzymatic) reduction of emodin to emodin hydroquinone, for example with sodium dithionite, is obligatory for the enzymatic reduction by AflM or MdpC. These results imply an unprecedented role of AflM in the complex enzymatic network of aflatoxin biosynthesis. << Less
J. Am. Chem. Soc. 137:10867-10869(2015) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.