Reaction participants Show >> << Hide
- Name help_outline (2E)-octenoyl-CoA Identifier CHEBI:62242 Charge -4 Formula C29H44N7O17P3S InChIKeyhelp_outline CPSDNAXXKWVYIY-NTLMCJQISA-J SMILEShelp_outline CCCCC\C=C\C(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 10 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,120 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline octanoyl-CoA Identifier CHEBI:57386 Charge -4 Formula C29H46N7O17P3S InChIKeyhelp_outline KQMZYOXOBSXMII-CECATXLMSA-J SMILEShelp_outline CCCCCCCC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 31 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,190 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:63232 | RHEA:63233 | RHEA:63234 | RHEA:63235 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Phosphorylation of enoyl-acyl carrier protein reductase InhA impacts mycobacterial growth and survival.
Khan S., Nagarajan S.N., Parikh A., Samantaray S., Singh A., Kumar D., Roy R.P., Bhatt A., Nandicoori V.K.
InhA, the primary target for the first line anti-tuberculosis drug isoniazid, is a key enzyme of the fatty-acid synthase II system involved in mycolic acid biosynthesis in Mycobacterium tuberculosis. In this study, we show that InhA is a substrate for mycobacterial serine/threonine protein kinases ... >> More
InhA, the primary target for the first line anti-tuberculosis drug isoniazid, is a key enzyme of the fatty-acid synthase II system involved in mycolic acid biosynthesis in Mycobacterium tuberculosis. In this study, we show that InhA is a substrate for mycobacterial serine/threonine protein kinases. Using a novel approach to validate phosphorylation of a substrate by multiple kinases in a surrogate host (Escherichia coli), we have demonstrated efficient phosphorylation of InhA by PknA, PknB, and PknH, and to a lower extent by PknF. Additionally, the sites targeted by PknA/PknB have been identified and shown to be predominantly located at the C terminus of InhA. Results demonstrate in vivo phosphorylation of InhA in mycobacteria and validate Thr-266 as one of the key sites of phosphorylation. Significantly, our studies reveal that the phosphorylation of InhA by kinases modulates its biochemical activity, with phosphorylation resulting in decreased enzymatic activity. Co-expression of kinase and InhA alters the growth dynamics of Mycobacterium smegmatis, suggesting that InhA phosphorylation in vivo is an important event in regulating its activity. An InhA-T266E mutant, which mimics constitutive phosphorylation, is unable to rescue an M. smegmatis conditional inhA gene replacement mutant, emphasizing the critical role of Thr-266 in mediating post-translational regulation of InhA activity. The involvement of various serine/threonine kinases in modulating the activity of a number of enzymes of the mycolic acid synthesis pathway, including InhA, accentuates the intricacies of mycobacterial signaling networks in parallel with the changing environment. << Less
-
Enzymatic characterization of the target for isoniazid in Mycobacterium tuberculosis.
Quemard A., Sacchettini J.C., Dessen A., Vilcheze C., Bittman R., Jacobs W.R. Jr., Blanchard J.S.
The inhA gene has been recently shown to encode a common protein target for isoniazid and ethionamide action in Mycobacterium tuberculosis. In this paper, we demonstrate that the M. tuberculosis InhA protein catalyzes the NADH-specific reduction of 2-trans-enoyl-ACP, essential for fatty acid elong ... >> More
The inhA gene has been recently shown to encode a common protein target for isoniazid and ethionamide action in Mycobacterium tuberculosis. In this paper, we demonstrate that the M. tuberculosis InhA protein catalyzes the NADH-specific reduction of 2-trans-enoyl-ACP, essential for fatty acid elongation. This enzyme preferentially reduces long-chain substrates (12-24 carbons), consistent with its involvement in mycolic acid biosynthesis. Steady-state kinetic studies showed that the two substrates bind to InhA via a sequential kinetic mechanism, with the preferred ordered addition of NADH and the enoyl substrate. The chemical mechanism involves stereospecific hydride transfer of the 4S hydrogen of NADH to the C3 position of the 2-trans-enoyl substrate, followed by protonation at C2 of an enzyme-stabilized enolate intermediate. Kinetic and microcalorimetric analysis demonstrates that the binding of NADH to the S94A mutant InhA, known to confer resistance to both isoniazid and ethionamide, is altered. This difference can account for the isoniazid-resistance phenotype, with the formation of a binary InhA-NADH complex required for drug binding. Isoniazid binding to either the wild-type or S94A mutant InhA could not be detected by titration microcalorimetry, suggesting that this compound is a prodrug, which must be converted to its active form. << Less
Biochemistry 34:8235-8241(1995) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.