Reaction participants Show >> << Hide
-
Namehelp_outline
an N-terminal L-α-aminoacyl-[protein]
Identifier
RHEA-COMP:10636
Reactive part
help_outline
- Name help_outline N-terminal L-α-amino-acid residue Identifier CHEBI:78597 Charge 1 Formula C2H4NOR SMILEShelp_outline [NH3+][C@@H]([*])C(-*)=O 2D coordinates Mol file for the small molecule Search links Involved in 14 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-methionine Identifier CHEBI:59789 Charge 1 Formula C15H23N6O5S InChIKeyhelp_outline MEFKEPWMEQBLKI-AIRLBKTGSA-O SMILEShelp_outline C[S+](CC[C@H]([NH3+])C([O-])=O)C[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 868 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
an N-terminal trimethyl-L-α-aminoacyl-[protein]
Identifier
RHEA-COMP:16230
Reactive part
help_outline
- Name help_outline N-terminal trimethyl-α-amino-acid residue Identifier CHEBI:146135 Charge 1 Formula C5H10NOR SMILEShelp_outline *C([C@H](*)[N+](C)(C)C)=O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-homocysteine Identifier CHEBI:57856 Charge 0 Formula C14H20N6O5S InChIKeyhelp_outline ZJUKTBDSGOFHSH-WFMPWKQPSA-N SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](CSCC[C@H]([NH3+])C([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 792 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:62916 | RHEA:62917 | RHEA:62918 | RHEA:62919 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Publications
-
Multiple-site trimethylation of ribosomal protein L11 by the PrmA methyltransferase.
Demirci H., Gregory S.T., Dahlberg A.E., Jogl G.
Ribosomal protein L11 is a universally conserved component of the large subunit, and plays a significant role during initiation, elongation, and termination of protein synthesis. In Escherichia coli, the lysine methyltransferase PrmA trimethylates the N-terminal alpha-amino group and the epsilon-a ... >> More
Ribosomal protein L11 is a universally conserved component of the large subunit, and plays a significant role during initiation, elongation, and termination of protein synthesis. In Escherichia coli, the lysine methyltransferase PrmA trimethylates the N-terminal alpha-amino group and the epsilon-amino groups of Lys3 and Lys39. Here, we report four PrmA-L11 complex structures in different orientations with respect to the PrmA active site. Two structures capture the L11 N-terminal alpha-amino group in the active site in a trimethylated post-catalytic state and in a dimethylated state with bound S-adenosyl-L-homocysteine. Two other structures show L11 in a catalytic orientation to modify Lys39 and in a noncatalytic orientation. The comparison of complex structures in different orientations with a minimal substrate recognition complex shows that the binding mode remains conserved in all L11 orientations, and that substrate orientation is brought about by the unusual interdomain flexibility of PrmA. << Less
-
Thermus thermophilus L11 methyltransferase, PrmA, is dispensable for growth and preferentially modifies free ribosomal protein L11 prior to ribosome assembly.
Cameron D.M., Gregory S.T., Thompson J., Suh M.-J., Limbach P.A., Dahlberg A.E.
The ribosomal protein L11 in bacteria is posttranslationally trimethylated at multiple amino acid positions by the L11 methyltransferase PrmA, the product of the prmA gene. The role of L11 methylation in ribosome function or assembly has yet to be determined, although the deletion of Escherichia c ... >> More
The ribosomal protein L11 in bacteria is posttranslationally trimethylated at multiple amino acid positions by the L11 methyltransferase PrmA, the product of the prmA gene. The role of L11 methylation in ribosome function or assembly has yet to be determined, although the deletion of Escherichia coli prmA has no apparent phenotype. We have constructed a mutant of the extreme thermophile Thermus thermophilus in which the prmA gene has been disrupted with the htk gene encoding a heat-stable kanamycin adenyltransferase. This mutant shows no growth defects, indicating that T. thermophilus PrmA, like its E. coli homolog, is dispensable. Ribosomes prepared from this mutant contain unmethylated L11, as determined by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), and are effective substrates for in vitro methylation by cloned and purified T. thermophilus PrmA. MALDI-TOF MS also revealed that T. thermophilus L11 contains a total of 12 methyl groups, in contrast to the 9 methyl groups found in E. coli L11. Finally, we found that, as with the E. coli methyltransferase, the ribosomal protein L11 dissociated from ribosomes is a more efficient substrate for in vitro methylation by PrmA than intact 70S ribosomes, suggesting that methylation in vivo occurs on free L11 prior to its incorporation into ribosomes. << Less
-
Ribosomal protein methylation in Escherichia coli: the gene prmA, encoding the ribosomal protein L11 methyltransferase, is dispensable.
Vanet A., Plumbridge J.A., Guerin M.F., Alix J.-H.
The prmA gene, located at 72 min on the Escherichia coli chromosome, is the genetic determinant of ribosomal protein L11-methyltransferase activity. Mutations at this locus, prmA1 and prmA3, result in a severely undermethylated form of L11. No effect, other than the lack of methyl groups on L11, h ... >> More
The prmA gene, located at 72 min on the Escherichia coli chromosome, is the genetic determinant of ribosomal protein L11-methyltransferase activity. Mutations at this locus, prmA1 and prmA3, result in a severely undermethylated form of L11. No effect, other than the lack of methyl groups on L11, has been ascribed to these mutations. DNA sequence analysis of the mutant alleles prmA1 and prmA3 detected point mutations near the C-terminus of the protein and plasmids overproducing the wild-type and the two mutant proteins have been constructed. The wild-type PrmA protein could be crosslinked to its radiolabelled substrate, S-adenosyl-L-methionine (SAM), by u.v. irradiation indicating that it is the gene for the methyltransferase rather than a regulatory protein. One of the mutant proteins, PrmA3, was also weakly crosslinked to SAM. Both mutant enzymes when expressed from the overproducing plasmids were capable of catalysing the incorporation of 3H-labelled methyl groups from SAM to L11 in vitro. This confirmed the observation that the mutant proteins possess significant residual activity which could account for their lack of growth phenotype. However, a strain carrying an in vitro-constructed null mutation of the prmA gene, transferred to the E. coli chromosome by homologous recombination, was perfectly viable. << Less
-
Genetics of ribosomal protein methylation in Escherichia coli. III. Map position of two genes, prmA and prmB, governing methylation of proteins L11 and L3.
Colson C., Lhoest J., Urlings C.
Two genes governing ribosomal protein methylation have been located on the map of Escherichia coli by conjugation and transduction crosses between wild-type and prm (protein methylation) mutants. The Prm phenotype of recombinants was determined by an in vitro assay of methylgroups incorporation in ... >> More
Two genes governing ribosomal protein methylation have been located on the map of Escherichia coli by conjugation and transduction crosses between wild-type and prm (protein methylation) mutants. The Prm phenotype of recombinants was determined by an in vitro assay of methylgroups incorporation into protein. Gene prmA, governing methylation of protein L11 is situated at minute 71 on the map and is cotransduced with aroE (30%) and with rpsL (5%). Gene prmB, governing methylation of protein L3 is at minute 50, very close to aroC (98.5% co-transduction). A cold-sensitive phenotype was found associated with mutation prmB and was used to score a large number of recombinants in a three factor cross. The results of this cross suggest the order aroC -prmB - purF. The striking symmetrical clustering of aro, prm and rim (ribosome maturation) genes is discussed. << Less