Reaction participants Show >> << Hide
-
Namehelp_outline
[thioredoxin]-dithiol
Identifier
RHEA-COMP:10698
Reactive part
help_outline
- Name help_outline L-cysteine residue Identifier CHEBI:29950 Charge 0 Formula C3H5NOS Positionhelp_outline n SMILEShelp_outline C(=O)(*)[C@@H](N*)CS 2D coordinates Mol file for the small molecule Search links Involved in 127 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-cysteine residue Identifier CHEBI:29950 Charge 0 Formula C3H5NOS Positionhelp_outline n+3 SMILEShelp_outline C(=O)(*)[C@@H](N*)CS 2D coordinates Mol file for the small molecule Search links Involved in 127 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a hydroperoxide Identifier CHEBI:35924 Charge 0 Formula HO2R SMILEShelp_outline OO[*] 2D coordinates Mol file for the small molecule Search links Involved in 28 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
[thioredoxin]-disulfide
Identifier
RHEA-COMP:10700
Reactive part
help_outline
- Name help_outline L-cystine residue Identifier CHEBI:50058 Charge 0 Formula C6H8N2O2S2 Positionhelp_outline n/n+3 SMILEShelp_outline C([C@@H](N*)CSSC[C@@H](C(=O)*)N*)(=O)* 2D coordinates Mol file for the small molecule Search links Involved in 51 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline an alcohol Identifier CHEBI:30879 Charge 0 Formula HOR SMILEShelp_outline O[*] 2D coordinates Mol file for the small molecule Search links Involved in 1,541 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:62620 | RHEA:62621 | RHEA:62622 | RHEA:62623 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Related reactions help_outline
Specific form(s) of this reaction
More general form(s) of this reaction
Publications
-
Mammalian peroxiredoxin isoforms can reduce hydrogen peroxide generated in response to growth factors and tumor necrosis factor-alpha.
Kang S.W., Chae H.Z., Seo M.S., Kim K., Baines I.C., Rhee S.G.
Mammalian tissues express three immunologically distinct peroxiredoxin (Prx) proteins (Prx I, II, and III), which are the products of distinct genes. With the use of recombinant proteins Prx I, II, and III, all have now been shown to possess peroxidase activity and to rely on Trx as a source of re ... >> More
Mammalian tissues express three immunologically distinct peroxiredoxin (Prx) proteins (Prx I, II, and III), which are the products of distinct genes. With the use of recombinant proteins Prx I, II, and III, all have now been shown to possess peroxidase activity and to rely on Trx as a source of reducing equivalents for the reduction of H2O2. Prx I and II are cytosolic proteins, whereas Prx III is localized in mitochondria. Transient overexpression of Prx I or II in cultured cells showed that they were able to eliminate the intracellular H2O2 generated in response to growth factors. Moreover, the activation of nuclear factor kappaB (NFkappaB) induced by extracellularly added H2O2 or tumor necrosis factor-alpha was blocked by overproduction of Prx II. These results suggest that, together with glutathione peroxidase and catalase, Prx enzymes likely play an important role in eliminating peroxides generated during metabolism. In addition, Prx I and II might participate in the signaling cascades of growth factors and tumor necrosis factor-alpha by regulating the intracellular concentration of H2O2. << Less
-
A novel peroxiredoxin of the plant Sedum lineare is a homologue of Escherichia coli bacterioferritin co-migratory protein (Bcp).
Kong W., Shiota S., Shi Y., Nakayama H., Nakayama K.
We cloned a gene encoding a 17-kDa protein from a cDNA library of the plant Sedum lineare and found that its deduced amino acid sequence showed similarities to those of Escherichia coli bacterioferritin co-migratory protein (Bcp) and its homologues, which comprise a discrete group associated with ... >> More
We cloned a gene encoding a 17-kDa protein from a cDNA library of the plant Sedum lineare and found that its deduced amino acid sequence showed similarities to those of Escherichia coli bacterioferritin co-migratory protein (Bcp) and its homologues, which comprise a discrete group associated with the peroxiredoxin (Prx) family. Studies of the recombinant 17-kDa protein produced in E. coli cells revealed that it actually had a thioredoxin-dependent peroxidase activity, the hallmark of the Prx family. PrxQ, as we now designate the 17-kDa protein, had two cysteine residues (Cys-44 and Cys-49) well conserved among proteins of the Bcp group. These two cysteines were demonstrated to be essential for the thioredoxin-dependent peroxidase activity by analysis of mutant proteins, suggesting that these residues are involved in the formation of an intramolecular disulphide bond as an intermediate in the reaction cycle. Expression of PrxQ suppressed the hypersensitivity of an E. coli bcp mutant to peroxides, indicating that it might exert an antioxidant activity in vivo. << Less
-
Thioredoxin-dependent hydroperoxide peroxidase activity of bacterioferritin comigratory protein (BCP) as a new member of the thiol-specific antioxidant protein (TSA)/Alkyl hydroperoxide peroxidase C (AhpC) family.
Jeong W., Cha M.K., Kim I.H.
Escherichia coli bacterioferritin comigratory protein (BCP), a putative bacterial member of the TSA/AhpC family, was characterized as a thiol peroxidase. BCP showed a thioredoxin-dependent thiol peroxidase activity. BCP preferentially reduced linoleic acid hydroperoxide rather than H(2)O(2) and t- ... >> More
Escherichia coli bacterioferritin comigratory protein (BCP), a putative bacterial member of the TSA/AhpC family, was characterized as a thiol peroxidase. BCP showed a thioredoxin-dependent thiol peroxidase activity. BCP preferentially reduced linoleic acid hydroperoxide rather than H(2)O(2) and t-butyl hydroperoxide with the use of thioredoxin as an in vivo immediate electron donor. The value of V(max)/K(m) of BCP for linoleic acid hydroperoxide was calculated to be 5-fold higher than that for H(2)O(2), implying that BCP has a selective capability to reduce linoleic acid hydroperoxide. Replacement of Cys-45 with serine resulted in the complete loss of thiol peroxidase activity, suggesting that BCP is a new bacterial member of TSA/AhpC family having a conserved cysteine as the primary site of catalysis. BCP exists as a monomer, and its functional Cys-45 appeared to exist as cysteine sulfenic acid. The expression level of BCP gradually elevated during exponential growth until mid-log phase growth, beyond which the expression level was decreased. BCP was induced 3-fold by the oxidative stress given by changing the growth conditions from the anaerobic to aerobic culture. Bcp null mutant grew more slowly than its wild type in aerobic culture and showed the hypersensitivity toward various oxidants such as H(2)O(2), t-butyl hydroperoxide, and linoleic acid hydroperoxide. The peroxide hypersensitivity of the null mutant could be complemented by the expression of bcp gene. Taken together, these data suggest that BCP is a new member of thioredoxin-dependent TSA/AhpC family, acting as a general hydroperoxide peroxidase. << Less
-
A comprehensive analysis of the peroxiredoxin reduction system in the Cyanobacterium Synechocystis sp. strain PCC 6803 reveals that all five peroxiredoxins are thioredoxin dependent.
Perez-Perez M.E., Mata-Cabana A., Sanchez-Riego A.M., Lindahl M., Florencio F.J.
Cyanobacteria perform oxygenic photosynthesis, which gives rise to the continuous production of reactive oxygen species, such as superoxide anion radicals and hydrogen peroxide, particularly under unfavorable growth conditions. Peroxiredoxins, which are present in both chloroplasts and cyanobacter ... >> More
Cyanobacteria perform oxygenic photosynthesis, which gives rise to the continuous production of reactive oxygen species, such as superoxide anion radicals and hydrogen peroxide, particularly under unfavorable growth conditions. Peroxiredoxins, which are present in both chloroplasts and cyanobacteria, constitute a class of thiol-dependent peroxidases capable of reducing hydrogen peroxide as well as alkyl hydroperoxides. Chloroplast peroxiredoxins have been studied extensively and have been found to use a variety of endogenous electron donors, such as thioredoxins, glutaredoxins, or cyclophilin, to sustain their activities. To date, however, the endogenous reduction systems for cyanobacterial peroxiredoxins have not been systematically studied. We have expressed and purified all five Synechocystis sp. strain PCC 6803 peroxiredoxins, which belong to the classes 1-Cys Prx, 2-Cys Prx, type II Prx (PrxII), and Prx Q, and we have examined their capacities to interact with and receive electrons from the m-, x-, and y-type thioredoxins from the same organism, which are called TrxA, TrxB, and TrxQ, respectively. Assays for peroxidase activity demonstrated that all five enzymes could use thioredoxins as electron donors, whereas glutathione and Synechocystis sp. strain PCC 6803 glutaredoxins were inefficient. The highest catalytic efficiency was obtained for the couple consisting of PrxII and TrxQ thioredoxin. Studies of transcript levels for the peroxiredoxins and thioredoxins under different stress conditions highlighted the similarity between the PrxII and TrxQ thioredoxin expression patterns. << Less
-
Structure, mechanism and regulation of peroxiredoxins.
Wood Z.A., Schroder E., Robin Harris J., Poole L.B.
Peroxiredoxins (Prxs) are a ubiquitous family of antioxidant enzymes that also control cytokine-induced peroxide levels which mediate signal transduction in mammalian cells. Prxs can be regulated by changes to phosphorylation, redox and possibly oligomerization states. Prxs are divided into three ... >> More
Peroxiredoxins (Prxs) are a ubiquitous family of antioxidant enzymes that also control cytokine-induced peroxide levels which mediate signal transduction in mammalian cells. Prxs can be regulated by changes to phosphorylation, redox and possibly oligomerization states. Prxs are divided into three classes: typical 2-Cys Prxs; atypical 2-Cys Prxs; and 1-Cys Prxs. All Prxs share the same basic catalytic mechanism, in which an active-site cysteine (the peroxidatic cysteine) is oxidized to a sulfenic acid by the peroxide substrate. The recycling of the sulfenic acid back to a thiol is what distinguishes the three enzyme classes. Using crystal structures, a detailed catalytic cycle has been derived for typical 2-Cys Prxs, including a model for the redox-regulated oligomeric state proposed to control enzyme activity. << Less
Trends Biochem Sci 28:32-40(2003) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.
-
Characterization of novel hexadecameric thioredoxin peroxidase from Aeropyrum pernix K1.
Jeon S.J., Ishikawa K.
A gene (APE2278) encoding the peroxiredoxin (Prx) homologous protein of yeast and human was identified in the genome data base of the aerobic hyperthermophilic archaeon Aeropyrum pernix. We cloned the gene and produced the encoded protein in Escherichia coli cells. The isolated recombinant protein ... >> More
A gene (APE2278) encoding the peroxiredoxin (Prx) homologous protein of yeast and human was identified in the genome data base of the aerobic hyperthermophilic archaeon Aeropyrum pernix. We cloned the gene and produced the encoded protein in Escherichia coli cells. The isolated recombinant protein showed peroxidase activity in vitro and used the thioredoxin system of A. pernix as an electron donor. These results indicate that the recombinant protein is in fact thioredoxin peroxidase (ApTPx) of A. pernix. Immunoblot analysis revealed that the expression of ApTPx was induced as a cellular adaptation in response to the addition of exogenous H2O2 and may exert an antioxidant activity in vivo. An analysis of the ApTPx oligomers by high pressure liquid chromatography and electron microscopic studies showed that ApTPx exhibited the hexadecameric protein forming 2-fold toroid-shaped structure with outer and inner diameters of 14 and 6 nm, respectively. These results indicated that ApTPx is a novel hexadecameric protein composed of two identical octamers. Although oligomerization of individual subunits does not take place through an intersubunit-disulfide linkage involving Cys50 and Cys213, Cys50 is essential for the formation of the hexadecamer. Mutagenesis studies suggest that the sulfhydryl group of Cys50 is the site of oxidation by peroxide and that oxidized Cys50 reacts with the sulfhydryl group of Cys213 of another subunit to form an intermolecular disulfide bond. The resulting disulfide can then be reduced by thioredoxin. In support of this hypothesis, ApTPx mutants lacking either Cys50 or Cys213 showed no TPx activity, whereas the mutant lacking Cys207 had a TPx activity. This is the first report on the biochemical and structural features of a novel hexadecameric thioredoxin peroxidase from the archaea. << Less