Enzymes
UniProtKB help_outline | 2 proteins |
Reaction participants Show >> << Hide
- Name help_outline 2-hydroxy-2-(4-hydroxyphenyl)acetate Identifier CHEBI:32804 Charge -1 Formula C8H7O4 InChIKeyhelp_outline YHXHKYRQLYQUIH-UHFFFAOYSA-M SMILEShelp_outline OC(C([O-])=O)c1ccc(O)cc1 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 4-hydroxybenzyl alcohol Identifier CHEBI:67410 (CAS: 623-05-2) help_outline Charge 0 Formula C7H8O2 InChIKeyhelp_outline BVJSUAQZOZWCKN-UHFFFAOYSA-N SMILEShelp_outline OCc1ccc(O)cc1 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CO2 Identifier CHEBI:16526 (Beilstein: 1900390; CAS: 124-38-9) help_outline Charge 0 Formula CO2 InChIKeyhelp_outline CURLTUGMZLYLDI-UHFFFAOYSA-N SMILEShelp_outline O=C=O 2D coordinates Mol file for the small molecule Search links Involved in 997 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:62588 | RHEA:62589 | RHEA:62590 | RHEA:62591 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Publications
-
p-Hydroxyphenylacetate decarboxylase from Clostridium difficile. A novel glycyl radical enzyme catalysing the formation of p-cresol.
Selmer T., Andrei P.I.
The human pathogenic bacterium Clostridium difficile is a versatile organism concerning its ability to ferment amino acids. The formation of p-cresol as the main fermentation product of tyrosine by C. difficile is unique among clostridial species. The enzyme responsible for p-cresol formation is p ... >> More
The human pathogenic bacterium Clostridium difficile is a versatile organism concerning its ability to ferment amino acids. The formation of p-cresol as the main fermentation product of tyrosine by C. difficile is unique among clostridial species. The enzyme responsible for p-cresol formation is p-hydroxyphenylacetate decarboxylase. The enzyme was purified from C. difficile strain DMSZ 1296(T) and initially characterized. The N-terminal amino-acid sequence was 100% identical to an open reading frame in the unfinished genome of C. difficile strain 630. The ORF encoded a protein of the same size as the purified decarboxylase and was very similar to pyruvate formate-lyase-like proteins from Escherichia coli and Archaeoglobus fulgidus. The enzyme decarboxylated p-hydroxyphenylacetate (K(m) = 2.8 mM) and 3,4-dihydroxyphenylacetate (K(m) = 0.5 mM). It was competitively inhibited by the substrate analogues p-hydroxyphenylacetylamide and p-hydroxymandelate with K(i) values of 0.7 mM and 0.48 mM, respectively. The protein was readily and irreversibly inactivated by molecular oxygen. Although the purified enzyme was active in the presence of sodium sulfide, there are some indications for an as yet unidentified low molecular mass cofactor that is required for catalytic activity in vivo. Based on the identification of p-hydroxyphenylacetate decarboxylase as a novel glycyl radical enzyme and the substrate specificity of the enzyme, a catalytic mechanism involving ketyl radicals as intermediates is proposed. << Less
Eur. J. Biochem. 268:1363-1372(2001) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.