Reaction participants Show >> << Hide
-
Namehelp_outline
cytidine839 in 12S rRNA
Identifier
RHEA-COMP:16110
Reactive part
help_outline
- Name help_outline CMP residue Identifier CHEBI:82748 Charge -1 Formula C9H11N3O7P Positionhelp_outline 839 SMILEShelp_outline Nc1ccn([C@@H]2O[C@H](COP([O-])(-*)=O)[C@@H](O-*)[C@H]2O)c(=O)n1 2D coordinates Mol file for the small molecule Search links Involved in 66 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-methionine Identifier CHEBI:59789 Charge 1 Formula C15H23N6O5S InChIKeyhelp_outline MEFKEPWMEQBLKI-AIRLBKTGSA-O SMILEShelp_outline C[S+](CC[C@H]([NH3+])C([O-])=O)C[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 868 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
N4-methylcytidine839 in 12S rRNA
Identifier
RHEA-COMP:16109
Reactive part
help_outline
- Name help_outline N4-methylcytidine 5'-phosphate residue Identifier CHEBI:74506 Charge -1 Formula C10H13N3O7P Positionhelp_outline 839 SMILEShelp_outline C1=CC(=NC(N1[C@@H]2O[C@H](COP(*)(=O)[O-])[C@H]([C@H]2O)O*)=O)NC 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-homocysteine Identifier CHEBI:57856 Charge 0 Formula C14H20N6O5S InChIKeyhelp_outline ZJUKTBDSGOFHSH-WFMPWKQPSA-N SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](CSCC[C@H]([NH3+])C([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 792 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:62524 | RHEA:62525 | RHEA:62526 | RHEA:62527 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
METTL15 introduces N4-methylcytidine into human mitochondrial 12S rRNA and is required for mitoribosome biogenesis.
Van Haute L., Hendrick A.G., D'Souza A.R., Powell C.A., Rebelo-Guiomar P., Harbour M.E., Ding S., Fearnley I.M., Andrews B., Minczuk M.
Post-transcriptional RNA modifications, the epitranscriptome, play important roles in modulating the functions of RNA species. Modifications of rRNA are key for ribosome production and function. Identification and characterization of enzymes involved in epitranscriptome shaping is instrumental for ... >> More
Post-transcriptional RNA modifications, the epitranscriptome, play important roles in modulating the functions of RNA species. Modifications of rRNA are key for ribosome production and function. Identification and characterization of enzymes involved in epitranscriptome shaping is instrumental for the elucidation of the functional roles of specific RNA modifications. Ten modified sites have been thus far identified in the mammalian mitochondrial rRNA. Enzymes responsible for two of these modifications have not been characterized. Here, we identify METTL15, show that it is the main N4-methylcytidine (m4C) methyltransferase in human cells and demonstrate that it is responsible for the methylation of position C839 in mitochondrial 12S rRNA. We show that the lack of METTL15 results in a reduction of the mitochondrial de novo protein synthesis and decreased steady-state levels of protein components of the oxidative phosphorylation system. Without functional METTL15, the assembly of the mitochondrial ribosome is decreased, with the late assembly components being unable to be incorporated efficiently into the small subunit. We speculate that m4C839 is involved in the stabilization of 12S rRNA folding, therefore facilitating the assembly of the mitochondrial small ribosomal subunits. Taken together our data show that METTL15 is a novel protein necessary for efficient translation in human mitochondria. << Less
Nucleic Acids Res. 47:10267-10281(2019) [PubMed] [EuropePMC]