Enzymes
UniProtKB help_outline | 2 proteins |
Reaction participants Show >> << Hide
- Name help_outline (E)-ascladiol Identifier CHEBI:145112 (CAS: 81183-44-0) help_outline Charge 0 Formula C7H8O4 InChIKeyhelp_outline HLJKDERCZVTVSN-LZCJLJQNSA-N SMILEShelp_outline C=1(/C(/OC(C1)=O)=C\CO)CO 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline A Identifier CHEBI:13193 Charge Formula R SMILEShelp_outline * 2D coordinates Mol file for the small molecule Search links Involved in 2,870 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline AH2 Identifier CHEBI:17499 Charge 0 Formula RH2 SMILEShelp_outline *([H])[H] 2D coordinates Mol file for the small molecule Search links Involved in 2,799 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline patulin Identifier CHEBI:74926 (CAS: 149-29-1) help_outline Charge 0 Formula C7H6O4 InChIKeyhelp_outline ZRWPUFFVAOMMNM-UHFFFAOYSA-N SMILEShelp_outline OC1OCC=C2OC(=O)C=C12 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:62228 | RHEA:62229 | RHEA:62230 | RHEA:62231 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Publications
-
Dissection of patulin biosynthesis, spatial control and regulation mechanism in Penicillium expansum.
Li B., Chen Y., Zong Y., Shang Y., Zhang Z., Xu X., Wang X., Long M., Tian S.
The patulin biosynthesis is one of model pathways in an understanding of secondary metabolite biology and network novelties in fungi. However, molecular regulation mechanism of patulin biosynthesis and contribution of each gene related to the different catalytic enzymes in the biochemical steps of ... >> More
The patulin biosynthesis is one of model pathways in an understanding of secondary metabolite biology and network novelties in fungi. However, molecular regulation mechanism of patulin biosynthesis and contribution of each gene related to the different catalytic enzymes in the biochemical steps of the pathway remain largely unknown in fungi. In this study, the genetic components of patulin biosynthetic pathway were systematically dissected in Penicillium expansum, which is an important fungal pathogen and patulin producer in harvested fruits and vegetables. Our results revealed that all the 15 genes in the cluster are involved in patulin biosynthesis. Proteins encoded by those genes are compartmentalized in various subcellular locations, including cytosol, nucleus, vacuole, endoplasmic reticulum, plasma membrane and cell wall. The subcellular localizations of some proteins, such as PatE and PatH, are required for the patulin production. Further, the functions of eight enzymes in the 10-step patulin biosynthetic pathway were verified in P. expansum. Moreover, velvet family proteins, VeA, VelB and VelC, were proved to be involved in the regulation of patulin biosynthesis, but not VosA. These findings provide a thorough understanding of the biosynthesis pathway, spatial control and regulation mechanism of patulin in fungi. << Less
Environ. Microbiol. 21:1124-1139(2019) [PubMed] [EuropePMC]
This publication is cited by 7 other entries.