Enzymes
UniProtKB help_outline | 5 proteins |
Reaction participants Show >> << Hide
- Name help_outline ethanol Identifier CHEBI:16236 (CAS: 64-17-5) help_outline Charge 0 Formula C2H6O InChIKeyhelp_outline LFQSCWFLJHTTHZ-UHFFFAOYSA-N SMILEShelp_outline CCO 2D coordinates Mol file for the small molecule Search links Involved in 22 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
Fe(III)-[cytochrome c]
Identifier
RHEA-COMP:14399
Reactive part
help_outline
- Name help_outline Fe3+ Identifier CHEBI:29034 (CAS: 20074-52-6) help_outline Charge 3 Formula Fe InChIKeyhelp_outline VTLYFUHAOXGGBS-UHFFFAOYSA-N SMILEShelp_outline [Fe+3] 2D coordinates Mol file for the small molecule Search links Involved in 248 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline acetaldehyde Identifier CHEBI:15343 (CAS: 75-07-0) help_outline Charge 0 Formula C2H4O InChIKeyhelp_outline IKHGUXGNUITLKF-UHFFFAOYSA-N SMILEShelp_outline [H]C(C)=O 2D coordinates Mol file for the small molecule Search links Involved in 47 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
Fe(II)-[cytochrome c]
Identifier
RHEA-COMP:10350
Reactive part
help_outline
- Name help_outline Fe2+ Identifier CHEBI:29033 (CAS: 15438-31-0) help_outline Charge 2 Formula Fe InChIKeyhelp_outline CWYNVVGOOAEACU-UHFFFAOYSA-N SMILEShelp_outline [Fe++] 2D coordinates Mol file for the small molecule Search links Involved in 263 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:62200 | RHEA:62201 | RHEA:62202 | RHEA:62203 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
KEGG help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Functional Role of Lanthanides in Enzymatic Activity and Transcriptional Regulation of Pyrroloquinoline Quinone-Dependent Alcohol Dehydrogenases in Pseudomonas putida KT2440.
Wehrmann M., Billard P., Martin-Meriadec A., Zegeye A., Klebensberger J.
The oxidation of alcohols and aldehydes is crucial for detoxification and efficient catabolism of various volatile organic compounds (VOCs). Thus, many Gram-negative bacteria have evolved periplasmic oxidation systems based on pyrroloquinoline quinone-dependent alcohol dehydrogenases (PQQ-ADHs) th ... >> More
The oxidation of alcohols and aldehydes is crucial for detoxification and efficient catabolism of various volatile organic compounds (VOCs). Thus, many Gram-negative bacteria have evolved periplasmic oxidation systems based on pyrroloquinoline quinone-dependent alcohol dehydrogenases (PQQ-ADHs) that are often functionally redundant. Here we report the first description and characterization of a lanthanide-dependent PQQ-ADH (PedH) in a nonmethylotrophic bacterium based on the use of purified enzymes from the soil-dwelling model organism <i>Pseudomonas putida</i> KT2440. PedH (PP_2679) exhibits enzyme activity on a range of substrates similar to that of its Ca<sup>2+</sup>-dependent counterpart PedE (PP_2674), including linear and aromatic primary and secondary alcohols, as well as aldehydes, but only in the presence of lanthanide ions, including La<sup>3+</sup>, Ce<sup>3+</sup>, Pr<sup>3+</sup>, Sm<sup>3+</sup>, or Nd<sup>3+</sup> Reporter assays revealed that PedH not only has a catalytic function but is also involved in the transcriptional regulation of <i>pedE</i> and <i>pedH</i>, most likely acting as a sensory module. Notably, the underlying regulatory network is responsive to as little as 1 to 10 nM lanthanum, a concentration assumed to be of ecological relevance. The present study further demonstrates that the PQQ-dependent oxidation system is crucial for efficient growth with a variety of volatile alcohols. From these results, we conclude that functional redundancy and inverse regulation of PedE and PedH represent an adaptive strategy of <i>P. putida</i> KT2440 to optimize growth with volatile alcohols in response to the availability of different lanthanides.<b>IMPORTANCE</b> Because of their low bioavailability, lanthanides have long been considered biologically inert. In recent years, however, the identification of lanthanides as a cofactor in methylotrophic bacteria has attracted tremendous interest among various biological fields. The present study reveals that one of the two PQQ-ADHs produced by the model organism <i>P. putida</i> KT2440 also utilizes lanthanides as a cofactor, thus expanding the scope of lanthanide-employing bacteria beyond the methylotrophs. Similar to the system described in methylotrophic bacteria, a complex regulatory network is involved in lanthanide-responsive switching between the two PQQ-ADHs encoded by <i>P. putida</i> KT2440. We further show that the functional production of at least one of the enzymes is crucial for efficient growth with several volatile alcohols. Overall, our study provides a novel understanding of the redundancy of PQQ-ADHs observed in many organisms and further highlights the importance of lanthanides for bacterial metabolism, particularly in soil environments. << Less
MBio 8:e00570-e00570(2017) [PubMed] [EuropePMC]
This publication is cited by 12 other entries.
-
Purification, crystallisation and characterization of quinoprotein ethanol dehydrogenase from Pseudomonas aeruginosa.
Rupp M., Goerisch H.
Pseudomonas aeruginosa ATCC 17933 when grown on ethanol produces high levels of a quinoprotein ethanol dehydrogenase, which amounts to 7% of the soluble protein. The enzyme has been purified to homogeneity and it crystallizes readily in the presence of polyethylene glycol 1550 or 6000. The ethanol ... >> More
Pseudomonas aeruginosa ATCC 17933 when grown on ethanol produces high levels of a quinoprotein ethanol dehydrogenase, which amounts to 7% of the soluble protein. The enzyme has been purified to homogeneity and it crystallizes readily in the presence of polyethylene glycol 1550 or 6000. The ethanol dehydrogenase (Km(ethanol) = 14 microM) resembles the dye-dependent quinoprotein methanol dehydrogenases of methylotrophic bacteria, but has a low affinity for methanol (Km (methanol) = 94mM). In addition the enzyme oxidizes secondary alcohols. With its catalytic properties the ethanol dehydrogenase is similar to the enzyme isolated from P. aeruginosa LMD 80.53 (Groen, B., Frank, J. Jzn. & Duine, J.A. (1984) Biochem. J. 223, 921-924). In contrast to this enzyme from P. aeruginosa LMD 80.53, which is a monomer, the ethanol dehydrogenase isolated from P. aeruginosa ATCC 17933 is a dimer of identical subunits of relative molecular mass 60,000. The N-terminal amino acid is lysine. Inactivation with cyclopropanone ethylhemiketal reveals one molecule of pyrroloquinoline quinone per subunit. As shown by active enzyme sedimentation, the dimer is the enzymatically active form. << Less
Biol. Chem. Hoppe-Seyler 369:431-439(1988) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Quinoprotein ethanol dehydrogenase from Pseudomonas aeruginosa: the unusual disulfide ring formed by adjacent cysteine residues is essential for efficient electron transfer to cytochrome c550.
Mennenga B., Kay C.W., Goerisch H.
All pyrroloquinoline quinone (PQQ)-dependent alcohol dehydrogenases contain an unusual disulfide ring formed between adjacent cysteine residues. A mutant enzyme that is lacking this structure was generated by replacing Cys105 and Cys106 with Ala in quinoprotein ethanol dehydrogenase (QEDH) from Ps ... >> More
All pyrroloquinoline quinone (PQQ)-dependent alcohol dehydrogenases contain an unusual disulfide ring formed between adjacent cysteine residues. A mutant enzyme that is lacking this structure was generated by replacing Cys105 and Cys106 with Ala in quinoprotein ethanol dehydrogenase (QEDH) from Pseudomonas aeruginosa ATCC17933. Heterologously expressed quinoprotein ethanol dehydrogenase in which Cys-105 and Cys-106 have been replaced by Ala (Cys105Ala/Cys106Ala apo-QEDH) was successfully converted to enzymatic active holo-enzyme by incorporation of its cofactor PQQ in the presence of Ca(2+). The enzymatic activity of the mutant enzyme in the artificial dye test with N-methylphenazonium methyl sulfate (PMS) and 2,6-dichlorophenol indophenol (DCPIP) at pH 9 did not depend on an activating amine which is essential for wild type activity under these conditions. The mutant enzyme showed increased Michaelis constants for primary alcohols, while the affinity for the secondary alcohol 2-propanol was unaltered. Surprisingly, for all substrates tested the specific activity of the mutant enzyme in the artificial dye test was higher than that found for wild type QEDH. On the contrary, in the ferricyanide test with the natural electron acceptor cytochrome c(550) the activity of mutant Cys105Ala/Cys106Ala was 15-fold lower than that of wild type QEDH. We demonstrate for the first time unambiguously that the unusual disulfide ring is essential for efficient electron transfer at pH 7 from QEDH to its natural electron acceptor cytochrome c(550). << Less
Arch. Microbiol. 191:361-367(2009) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Cytochrome c550 from Pseudomonas aeruginosa.
Reichmann P., Goerisch H.
In cells of Pseudomonas aeruginosa A.T.C.C. 17933 grown on ethanol the synthesis of a soluble c-type cytochrome, together with quinoprotein ethanol dehydrogenase, is induced. The cytochrome, with an alpha-absorption band at 550 nm, was purified to homogeneity. The molecular mass of the monomeric p ... >> More
In cells of Pseudomonas aeruginosa A.T.C.C. 17933 grown on ethanol the synthesis of a soluble c-type cytochrome, together with quinoprotein ethanol dehydrogenase, is induced. The cytochrome, with an alpha-absorption band at 550 nm, was purified to homogeneity. The molecular mass of the monomeric protein is 15 kDa, the pI is 4.8, and it contains one haem prosthetic group. The midpoint potential of the autoxidizable, but not autoreducible, cytochrome is 280 mV. Cytochrome c550 mediates electron transfer between quinoprotein ethanol dehydrogenase and ferricyanide. In a system composed of membrane particles with NN'NN'-tetramethyl-p-phenylenediamine oxidase activity and quinoprotein ethanol dehydrogenase, oxygen consumption is only observed in the presence of cytochrome c550. This indicates the participation of the cytochrome in the electron-transport chain linked to quinoprotein ethanol dehydrogenase in P. aeruginosa. The electron transport from ethanol dehydrogenase to oxygen is inhibited by myxothiazol and antimycin, indicating that a cytochrome bc1-like complex is involved. << Less