Reaction participants Show >> << Hide
- Name help_outline 3β-hydroxy-5α-androstan-17-one Identifier CHEBI:541975 (CAS: 481-29-8) help_outline Charge 0 Formula C19H30O2 InChIKeyhelp_outline QGXBDMJGAMFCBF-LUJOEAJASA-N SMILEShelp_outline [H][C@@]12CC[C@@]3([H])[C@]4([H])CCC(=O)[C@@]4(C)CC[C@]3([H])[C@@]1(C)CC[C@H](O)C2 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline UDP-α-D-glucose Identifier CHEBI:58885 (Beilstein: 3827329) help_outline Charge -2 Formula C15H22N2O17P2 InChIKeyhelp_outline HSCJRCZFDFQWRP-JZMIEXBBSA-L SMILEShelp_outline OC[C@H]1O[C@H](OP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2ccc(=O)[nH]c2=O)[C@H](O)[C@@H](O)[C@@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 231 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline epiandrosterone 3-β-D-glucoside Identifier CHEBI:145048 Charge 0 Formula C25H40O7 InChIKeyhelp_outline KNJIBCLNEUIEHR-ZZYATJHVSA-N SMILEShelp_outline C1[C@@H](C[C@@]2(CC[C@]3([C@]4([C@](CC[C@@]3([C@@]2(C)C1)[H])(C(CC4)=O)C)[H])[H])[H])O[C@H]5[C@@H]([C@H]([C@@H]([C@H](O5)CO)O)O)O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline UDP Identifier CHEBI:58223 Charge -3 Formula C9H11N2O12P2 InChIKeyhelp_outline XCCTYIAWTASOJW-XVFCMESISA-K SMILEShelp_outline O[C@@H]1[C@@H](COP([O-])(=O)OP([O-])([O-])=O)O[C@H]([C@@H]1O)n1ccc(=O)[nH]c1=O 2D coordinates Mol file for the small molecule Search links Involved in 577 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:61820 | RHEA:61821 | RHEA:61822 | RHEA:61823 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Molecular cloning and characterization of one member of 3beta-hydroxy sterol glucosyltransferase gene family in Withania somnifera.
Sharma L.K., Madina B.R., Chaturvedi P., Sangwan R.S., Tuli R.
Sterol glycosides are constituents of plant cell membranes. Glucosylations of the sterols are catalyzed by sterol glucosyltransferases (SGTs), which are members of family 1 glycosyltransferases. We have identified the family of SGT genes expressed in the leaves of a medicinal plant Withania somnif ... >> More
Sterol glycosides are constituents of plant cell membranes. Glucosylations of the sterols are catalyzed by sterol glucosyltransferases (SGTs), which are members of family 1 glycosyltransferases. We have identified the family of SGT genes expressed in the leaves of a medicinal plant Withania somnifera. One member (SGTL1) of this gene family was cloned. The full-length cDNA sequence of SGTL1 represents 2532 bp, comprising untranslated regions (UTRs) of 337 and 89 bp at the 5' and 3' ends, respectively. The amino acid sequence deduced from the 2103 bp open reading frame (ORF) showed homology (67-45%) to the reported plant SGTs. The presence of two putative transmembrane domains suggested the association of SGTL1 with membrane. The SGTL1 was expressed in Escherichia coli and recombinant enzyme from the supernatant was partially purified and biochemically characterized. The relative activity and kinetic properties of SGTL1 for different sterols were compared with a recombinant SGT (GenBank Accession No. Z83833) of Arabidopsis thaliana (AtSGT). Both the recombinant enzymes showed activity with 3-beta-OH sterols. The distribution of SGTL1 transcript in W. somnifera, as determined by quantitative PCR, showed higher expression in roots and mature leaves. Expression of the SGTL1 transcript in the leaves of W. somnifera was enhanced following the application of salicylic acid. In contrast, it decreased rapidly on exposure of the plants to heat shock, suggesting functional role of the enzyme in biotic and abiotic stresses. << Less
Arch Biochem Biophys 460:48-55(2007) [PubMed] [EuropePMC]
This publication is cited by 10 other entries.