Enzymes
| UniProtKB help_outline | 2 proteins |
| GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline steviol Identifier CHEBI:145011 Charge -1 Formula C20H29O3 InChIKeyhelp_outline QFVOYBUQQBFCRH-VQSWZGCSSA-M SMILEShelp_outline [O-]C([C@]1([C@@]2([C@]([C@]3([C@]4(C[C@@](O)(CC3)C(C4)=C)CC2)[H])(CCC1)C)[H])C)=O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline UDP-α-D-glucose Identifier CHEBI:58885 (Beilstein: 3827329) help_outline Charge -2 Formula C15H22N2O17P2 InChIKeyhelp_outline HSCJRCZFDFQWRP-JZMIEXBBSA-L SMILEShelp_outline OC[C@H]1O[C@H](OP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2ccc(=O)[nH]c2=O)[C@H](O)[C@@H](O)[C@@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 258 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline steviolmonoside Identifier CHEBI:145010 Charge -1 Formula C26H39O8 InChIKeyhelp_outline QSIDJGUAAUSPMG-CULFPKEHSA-M SMILEShelp_outline O=C([C@]1([C@@]2([C@]([C@]3([C@]4(C[C@@](CC3)(C(C4)=C)O[C@H]5[C@H](O)[C@H]([C@H](O)[C@H](O5)CO)O)CC2)[H])(CCC1)C)[H])C)[O-] 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline UDP Identifier CHEBI:58223 Charge -3 Formula C9H11N2O12P2 InChIKeyhelp_outline XCCTYIAWTASOJW-XVFCMESISA-K SMILEShelp_outline O[C@@H]1[C@@H](COP([O-])(=O)OP([O-])([O-])=O)O[C@H]([C@@H]1O)n1ccc(=O)[nH]c1=O 2D coordinates Mol file for the small molecule Search links Involved in 637 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,932 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
| RHEA:61732 | RHEA:61733 | RHEA:61734 | RHEA:61735 | |
|---|---|---|---|---|
| Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
| UniProtKB help_outline |
|
|||
| Gene Ontology help_outline | ||||
| MetaCyc help_outline |
Publications
-
Functional genomics uncovers three glucosyltransferases involved in the synthesis of the major sweet glucosides of Stevia rebaudiana.
Richman A., Swanson A., Humphrey T., Chapman R., McGarvey B., Pocs R., Brandle J.
Stevia rebaudiana leaves accumulate a mixture of at least eight different steviol glycosides. The pattern of glycosylation heavily influences the taste perception of these intensely sweet compounds. The majority of the glycosides are formed by four glucosylation reactions that start with steviol a ... >> More
Stevia rebaudiana leaves accumulate a mixture of at least eight different steviol glycosides. The pattern of glycosylation heavily influences the taste perception of these intensely sweet compounds. The majority of the glycosides are formed by four glucosylation reactions that start with steviol and end with rebaudioside A. The steps involve the addition of glucose to the C-13 hydroxyl of steviol, the transfer of glucose to the C-2' and C-3' of the 13-O-glucose and the addition of glucose to the hydroxyl of the C-4 carboxyl group. We used our collection of ESTs, an UDP-glucosyltransferase (UGT)-specific electronic probe and key word searches to identify candidate genes resident in our collection. Fifty-four expressed sequence tags (ESTs) belonging to 17 clusters were found using this procedure. We isolated full length cDNAs for 12 of the UGTs, cloned them into an expression vector, and produced recombinant enzymes in Escherichia coli. An in vitro glucosyltransferase activity enzyme assay was conducted using quercetin, kaempferol, steviol, steviolmonoside, steviolbioside, and stevioside as sugar acceptors, and (14)C-UDP-glucose as the donor. Thin layer chromatography was used to separate the products and three of the recombinant enzymes produced labelled products that co-migrated with known standards. HPLC and LC-ES/MS were then used to further define those reaction products. We determined that steviol UGTs behave in a regioselective manner and propose a modified pathway for the synthesis of rebaudioside A from steviol. << Less
Plant J. 41:56-67(2005) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.