Enzymes
UniProtKB help_outline | 3 proteins |
Enzyme class help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline salicylate Identifier CHEBI:30762 (CAS: 63-36-5) help_outline Charge -1 Formula C7H5O3 InChIKeyhelp_outline YGSDEFSMJLZEOE-UHFFFAOYSA-M SMILEShelp_outline Oc1ccccc1C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 24 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
holo-[ACP]
Identifier
RHEA-COMP:9685
Reactive part
help_outline
- Name help_outline O-(pantetheine-4ʼ-phosphoryl)-L-serine residue Identifier CHEBI:64479 Charge -1 Formula C14H25N3O8PS SMILEShelp_outline C(NC(CCNC(=O)[C@@H](C(COP(OC[C@@H](C(*)=O)N*)(=O)[O-])(C)C)O)=O)CS 2D coordinates Mol file for the small molecule Search links Involved in 196 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,284 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
salicyl-[ACP]
Identifier
RHEA-COMP:19022
Reactive part
help_outline
- Name help_outline O-(S-salicylpantetheine-4ʼ-phosphoryl)-L-serine residue Identifier CHEBI:86464 Charge -1 Formula C21H29N3O10PS SMILEShelp_outline CC(C)(COP([O-])(=O)OC[C@H](N-*)C(-*)=O)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)c1ccccc1O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline AMP Identifier CHEBI:456215 Charge -2 Formula C10H12N5O7P InChIKeyhelp_outline UDMBCSSLTHHNCD-KQYNXXCUSA-L SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 512 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline diphosphate Identifier CHEBI:33019 (Beilstein: 185088) help_outline Charge -3 Formula HO7P2 InChIKeyhelp_outline XPPKVPWEQAFLFU-UHFFFAOYSA-K SMILEShelp_outline OP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,139 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:61648 | RHEA:61649 | RHEA:61650 | RHEA:61651 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
A latent oxazoline electrophile for N-O-C bond formation in pseudomonine biosynthesis.
Sattely E.S., Walsh C.T.
Nitrogen-heteroatom bonds figure prominently in the structural, chemical, and functional diversity of natural products. In the case of Pseudomonas siderophore pseudomonine, an N-O hydroxamate linkage is found uncommonly configured in an isoxazolidinone ring. In an effort to understand the biogenes ... >> More
Nitrogen-heteroatom bonds figure prominently in the structural, chemical, and functional diversity of natural products. In the case of Pseudomonas siderophore pseudomonine, an N-O hydroxamate linkage is found uncommonly configured in an isoxazolidinone ring. In an effort to understand the biogenesis of this heterocycle, we have characterized the pseudomonine synthetase in vitro and reconstituted the complete biosynthetic pathway. Our results indicate that the isoxazolidinone of pseudomonine arises from spontaneous rearrangement of an oxazoline precursor. To the best of our knowledge, this is a previously uncharacterized mode of post-assembly line heterocyclization. Our results establish the oxygen of the ubiquitous siderophore hydroxamate functionality as a nucleophile and may be indicative of general strategy for N-O-C bond formation in nature. << Less
J. Am. Chem. Soc. 130:12282-12284(2008) [PubMed] [EuropePMC]
This publication is cited by 7 other entries.
-
Assembly of the Pseudomonas aeruginosa nonribosomal peptide siderophore pyochelin: In vitro reconstitution of aryl-4, 2-bisthiazoline synthetase activity from PchD, PchE, and PchF.
Quadri L.E., Keating T.A., Patel H.M., Walsh C.T.
Three Pseudomonas aeruginosa proteins involved in biogenesis of the nonribosomal peptide siderophore pyochelin, PchD, PchE, and PchF, have been expressed in and purified from Escherichia coli and are found to produce the tricyclic acid hydroxyphenyl-thiazolyl-thiazolinyl-carboxylic acid (HPTT-COOH ... >> More
Three Pseudomonas aeruginosa proteins involved in biogenesis of the nonribosomal peptide siderophore pyochelin, PchD, PchE, and PchF, have been expressed in and purified from Escherichia coli and are found to produce the tricyclic acid hydroxyphenyl-thiazolyl-thiazolinyl-carboxylic acid (HPTT-COOH), an advanced intermediate containing the aryl-4,2-bis-heterocyclic skeleton of the bithiazoline class of siderophores. The three proteins contain three adenylation domains, one specific for salicylate activation and two specific for cysteine activation, and three carrier protein domains (two in PchE and one in PchF) that undergo posttranslational priming with phosphopantetheine to enable covalent tethering of salicyl and cysteinyl moieties as acyl-S-enzyme intermediates. Two cyclization domains (Cy1 in PchE and Cy2 in PchF) create the two amide linkages in the elongating chains and the cyclodehydrations of acylcysteine moieties into thiazolinyl rings. The ninth domain, the most downstream domain in PchF, is the chain-terminating, acyl-S-enzyme thioester hydrolase that releases the HPTT-S-enzyme intermediate to the observed tandem bis-heterocyclic acid product. A PchF-thioesterase domain active site double mutant fails to turn over, but a monocyclic hydroxyphenyl-thiazolinyl-cysteine (HPT-Cys) product continues to be released from PchE, allowing assignment of the cascade of acyl-S-enzyme intermediates involved in initiation, elongation, and termination steps. << Less
Biochemistry 38:14941-14954(1999) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.
Comments
Multi-step reaction: RHEA:46704 + RHEA:46708