Enzymes
UniProtKB help_outline | 3 proteins |
Enzyme class help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
L-cysteinyl-[sulfatase]
Identifier
RHEA-COMP:12900
Reactive part
help_outline
- Name help_outline L-cysteine residue Identifier CHEBI:29950 Charge 0 Formula C3H5NOS SMILEShelp_outline C(=O)(*)[C@@H](N*)CS 2D coordinates Mol file for the small molecule Search links Involved in 127 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-methionine Identifier CHEBI:59789 Charge 1 Formula C15H23N6O5S InChIKeyhelp_outline MEFKEPWMEQBLKI-AIRLBKTGSA-O SMILEShelp_outline C[S+](CC[C@H]([NH3+])C([O-])=O)C[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 868 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
3-oxo-L-alanyl-[sulfatase]
Identifier
RHEA-COMP:12901
Reactive part
help_outline
- Name help_outline L-3-oxoalanine residue Identifier CHEBI:85621 Charge 0 Formula C3H3NO2 SMILEShelp_outline C([C@H](C(=O)[H])N*)(=O)* 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 5'-deoxyadenosine Identifier CHEBI:17319 (CAS: 4754-39-6) help_outline Charge 0 Formula C10H13N5O3 InChIKeyhelp_outline XGYIMTFOTBMPFP-KQYNXXCUSA-N SMILEShelp_outline C[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 69 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline hydrogen sulfide Identifier CHEBI:29919 (CAS: 15035-72-0) help_outline Charge -1 Formula HS InChIKeyhelp_outline RWSOTUBLDIXVET-UHFFFAOYSA-M SMILEShelp_outline [S-][H] 2D coordinates Mol file for the small molecule Search links Involved in 56 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-methionine Identifier CHEBI:57844 Charge 0 Formula C5H11NO2S InChIKeyhelp_outline FFEARJCKVFRZRR-BYPYZUCNSA-N SMILEShelp_outline CSCC[C@H]([NH3+])C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 121 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:61592 | RHEA:61593 | RHEA:61594 | RHEA:61595 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
MetaCyc help_outline |
Publications
-
Mechanistic investigations of anaerobic sulfatase-maturating enzyme: direct Cbeta H-atom abstraction catalyzed by a radical AdoMet enzyme.
Benjdia A., Leprince J., Sandstroem C., Vaudry H., Berteau O.
Sulfatases are unique in requiring an essential post-translational modification of a critical active-site cysteinyl or seryl residue to 3-oxoalanine usually called C alpha-formylglycine (FGly). This post-translational modification is catalyzed anaerobically by anaerobic Sulfatase Maturating Enzyme ... >> More
Sulfatases are unique in requiring an essential post-translational modification of a critical active-site cysteinyl or seryl residue to 3-oxoalanine usually called C alpha-formylglycine (FGly). This post-translational modification is catalyzed anaerobically by anaerobic Sulfatase Maturating Enzyme (anSME), a member of the radical AdoMet superfamily. Using a new labeled substrate, we demonstrate that anSME uses a 5'-deoxyadenosyl radical to catalyze direct H-atom abstraction from the substrate. We thus established that anSMEs are the first radical AdoMet enzymes catalyzing a post-translational modification involving C(beta) H-atom abstraction from an active site cysteinyl or seryl residue. This mechanistic study allowed us to decipher the first steps of the mechanism of this new radical AdoMet enzyme family. << Less
-
Anaerobic sulfatase-maturating enzyme--a mechanistic link with glycyl radical-activating enzymes?
Benjdia A., Subramanian S., Leprince J., Vaudry H., Johnson M.K., Berteau O.
Sulfatases form a major group of enzymes present in prokaryotes and eukaryotes. This class of hydrolases is unique in requiring essential post-translational modification of a critical active-site cysteinyl or seryl residue to C(alpha)-formylglycine (FGly). Herein, we report mechanistic investigati ... >> More
Sulfatases form a major group of enzymes present in prokaryotes and eukaryotes. This class of hydrolases is unique in requiring essential post-translational modification of a critical active-site cysteinyl or seryl residue to C(alpha)-formylglycine (FGly). Herein, we report mechanistic investigations of a unique class of radical-S-adenosyl-L-methionine (AdoMet) enzymes, namely anaerobic sulfatase-maturating enzymes (anSMEs), which catalyze the oxidation of Cys-type and Ser-type sulfatases and possess three [4Fe-4S](2+,+) clusters. We were able to develop a reliable quantitative enzymatic assay that allowed the direct measurement of FGly production and AdoMet cleavage. The results demonstrate stoichiometric coupling of AdoMet cleavage and FGly formation using peptide substrates with cysteinyl or seryl active-site residues. Analytical and EPR studies of the reconstituted wild-type enzyme and cysteinyl cluster mutants indicate the presence of three almost isopotential [4Fe-4S](2+,+) clusters, each of which is required for the generation of FGly in vitro. More surprisingly, our data indicate that the two additional [4Fe-4S](2+,+) clusters are required to obtain efficient reductive cleavage of AdoMet, suggesting their involvement in the reduction of the radical AdoMet [4Fe-4S](2+,+) center. These results, in addition to the recent demonstration of direct abstraction by anSMEs of the C(beta) H-atom from the sulfatase active-site cysteinyl or seryl residue using a 5'-deoxyadenosyl radical, provide new insights into the mechanism of this new class of radical-AdoMet enzymes. << Less
-
Anaerobic sulfatase-maturating enzymes - first dual substrate radical S-adenosylmethionine enzymes.
Benjdia A., Subramanian S., Leprince J., Vaudry H., Johnson M.K., Berteau O.
Sulfatases are a major group of enzymes involved in many critical physiological processes as reflected by their broad distribution in all three domains of life. This class of hydrolases is unique in requiring an essential post-translational modification of a critical active-site cysteine or serine ... >> More
Sulfatases are a major group of enzymes involved in many critical physiological processes as reflected by their broad distribution in all three domains of life. This class of hydrolases is unique in requiring an essential post-translational modification of a critical active-site cysteine or serine residue to C(alpha)-formylglycine. This modification is catalyzed by at least three nonhomologous enzymatic systems in bacteria. Each enzymatic system is currently considered to be dedicated to the modification of either cysteine or serine residues encoded in the sulfatase-active site and has been accordingly categorized as Cys-type and Ser-type sulfatase-maturating enzymes. We report here the first detailed characterization of two bacterial anaerobic sulfatase-maturating enzymes (anSMEs) that are physiologically responsible for either Cys-type or Ser-type sulfatase maturation. The activity of both enzymes was investigated in vivo and in vitro using synthetic substrates and the successful purification of both enzymes facilitated the first biochemical and spectroscopic characterization of this class of enzyme. We demonstrate that reconstituted anSMEs are radical S-adenosyl-l-methionine enzymes containing a redox active [4Fe-4S](2+,+) cluster that initiates the radical reaction by binding and reductively cleaving S-adenosyl-l-methionine to yield 5 '-deoxyadenosine and methionine. Surprisingly, our results show that anSMEs are dual substrate enzymes able to oxidize both cysteine and serine residues to C(alpha)-formylglycine. Taken together, the results support a radical modification mechanism that is initiated by hydrogen abstraction from a serine or cysteine residue located in an appropriate target sequence. << Less
-
A new type of bacterial sulfatase reveals a novel maturation pathway in prokaryotes.
Berteau O., Guillot A., Benjdia A., Rabot S.
Sulfatases are a highly conserved family of enzymes found in all three domains of life. To be active, sulfatases undergo a unique post-translational modification leading to the conversion of either a critical cysteine ("Cys-type" sulfatases) or a serine ("Ser-type" sulfatases) into a Calpha-formyl ... >> More
Sulfatases are a highly conserved family of enzymes found in all three domains of life. To be active, sulfatases undergo a unique post-translational modification leading to the conversion of either a critical cysteine ("Cys-type" sulfatases) or a serine ("Ser-type" sulfatases) into a Calpha-formylglycine (FGly). This conversion depends on a strictly conserved sequence called "sulfatase signature" (C/S)XPXR. In a search for new enzymes from the human microbiota, we identified the first sulfatase from Firmicutes. Matrix-assisted laser desorption ionization time-of-flight analysis revealed that this enzyme undergoes conversion of its critical cysteine residue into FGly, even though it has a modified (C/S)XAXR sulfatase signature. Examination of the bacterial and archaeal genomes sequenced to date has identified many genes bearing this new motif, suggesting that the definition of the sulfatase signature should be expanded. Furthermore, we have also identified a new Cys-type sulfatase-maturating enzyme that catalyzes the conversion of cysteine into FGly, in anaerobic conditions, whereas the only enzyme reported so far to be able to catalyze this reaction is oxygen-dependent. The new enzyme belongs to the radical S-adenosyl-l-methionine enzyme superfamily and is related to the Ser-type sulfatase-maturating enzymes. This finding leads to the definition of a new enzyme family of sulfatase-maturating enzymes that we have named anSME (anaerobic sulfatase-maturating enzyme). This family includes enzymes able to maturate Cys-type as well as Ser-type sulfatases in anaerobic conditions. In conclusion, our results lead to a new scheme for the biochemistry of sulfatases maturation and suggest that the number of genes and bacterial species encoding sulfatase enzymes is currently underestimated. << Less
-
Further characterization of Cys-type and Ser-type anaerobic sulfatase maturating enzymes suggests a commonality in the mechanism of catalysis.
Grove T.L., Ahlum J.H., Qin R.M., Lanz N.D., Radle M.I., Krebs C., Booker S.J.
The anaerobic sulfatase-maturating enzyme from Clostridium perfringens (anSMEcpe) catalyzes the two-electron oxidation of a cysteinyl residue on a cognate protein to a formylglycyl residue (FGly) using a mechanism that involves organic radicals. The FGly residue plays a unique role as a cofactor i ... >> More
The anaerobic sulfatase-maturating enzyme from Clostridium perfringens (anSMEcpe) catalyzes the two-electron oxidation of a cysteinyl residue on a cognate protein to a formylglycyl residue (FGly) using a mechanism that involves organic radicals. The FGly residue plays a unique role as a cofactor in a class of enzymes termed arylsulfatases, which catalyze the hydrolysis of various organosulfate monoesters. anSMEcpe has been shown to be a member of the radical S-adenosylmethionine (SAM) family of enzymes, [4Fe-4S] cluster-requiring proteins that use a 5'-deoxyadenosyl 5'-radical (5'-dA(•)) generated from a reductive cleavage of SAM to initiate radical-based catalysis. Herein, we show that anSMEcpe contains in addition to the [4Fe-4S] cluster harbored by all radical SAM (RS) enzymes, two additional [4Fe-4S] clusters, similar to the radical SAM protein AtsB, which catalyzes the two-electron oxidation of a seryl residue to a FGly residue. We show by size-exclusion chromatography that both AtsB and anSMEcpe are monomeric proteins, and site-directed mutagenesis studies of AtsB reveal that individual Cys → Ala substitutions at seven conserved positions result in an insoluble protein, consistent with those residues acting as ligands to the two additional [4Fe-4S] clusters. Ala substitutions at an additional conserved Cys residue (C291 in AtsB and C276 in anSMEcpe) afford proteins that display intermediate behavior. These proteins exhibit reduced solubility and drastically reduced activity, behavior that is conspicuously similar to that of a critical Cys residue in BtrN, another radical SAM dehydrogenase [Grove, T. L., et al. (2010) Biochemistry 49, 3783-3785]. We also show that wild-type anSMEcpe acts on peptides containing other oxidizable amino acids at the target position. Moreover, we show that the enzyme will convert threonyl peptides to the corresponding ketone product, and also allo-threonyl peptides, but with a significantly reduced efficiency, suggesting that the pro-S hydrogen atom of the normal cysteinyl substrate is stereoselectively removed during turnover. Lastly, we show that the electron generated during catalysis by AtsB and anSMEcpe can be utilized for multiple turnovers, albeit through a reduced flavodoxin-mediated pathway. << Less