Enzymes
UniProtKB help_outline | 1 proteins |
Reaction participants Show >> << Hide
- Name help_outline (11Z,14Z)-eicosadienoate Identifier CHEBI:77220 Charge -1 Formula C20H35O2 InChIKeyhelp_outline XSXIVVZCUAHUJO-HZJYTTRNSA-M SMILEShelp_outline CCCCC\C=C/C\C=C/CCCCCCCCCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,727 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (15S)-hydroperoxy-(11Z,13E)-eicosadienoate Identifier CHEBI:144832 Charge -1 Formula C20H35O4 InChIKeyhelp_outline KEXNVBSLXJLOPR-XMSPSUPSSA-M SMILEShelp_outline C(C/C=C\C=C\[C@H](CCCCC)OO)CCCCCCCC(=O)[O-] 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:61572 | RHEA:61573 | RHEA:61574 | RHEA:61575 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Publications
-
Structural and functional basis of phospholipid oxygenase activity of bacterial lipoxygenase from Pseudomonas aeruginosa.
Banthiya S., Kalms J., Galemou Yoga E., Ivanov I., Carpena X., Hamberg M., Kuhn H., Scheerer P.
Pseudomonas aeruginosa expresses a secreted LOX-isoform (PA-LOX, LoxA) capable of oxidizing polyenoic fatty acids to hydroperoxy derivatives. Here we report high-level expression of this enzyme in E. coli and its structural and functional characterization. Recombinant PA-LOX oxygenates polyenoic f ... >> More
Pseudomonas aeruginosa expresses a secreted LOX-isoform (PA-LOX, LoxA) capable of oxidizing polyenoic fatty acids to hydroperoxy derivatives. Here we report high-level expression of this enzyme in E. coli and its structural and functional characterization. Recombinant PA-LOX oxygenates polyenoic fatty acids including eicosapentaenoic acid and docosahexaenoic acid to the corresponding (n-6)S-hydroperoxy derivatives. This reaction involves abstraction of the proS-hydrogen from the n-8 bisallylic methylene. PA-LOX lacks major leukotriene synthase activity but converts 5S-HETE and 5S,6R/S-DiHETE to anti-inflammatory and pro-resolving lipoxins. It also exhibits phospholipid oxygenase activity as indicated by the formation of a specific pattern of oxygenation products from different phospholipid subspecies. Multiple mutagenesis studies revealed that PA-LOX does not follow classical concepts explaining the reaction specificity of mammalian LOXs. The crystal structure of PA-LOX was solved with resolutions of up to 1.48Å and its polypeptide chain is folded as single domain. The substrate-binding pocket consists of two fatty acid binding subcavities and lobby. Subcavity-1 contains the catalytic non-heme iron. A phosphatidylethanolamine molecule occupies the substrate-binding pocket and its sn1 fatty acid is located close to the catalytic non-heme iron. His377, His382, His555, Asn559 and the C-terminal Ile685 function as direct iron ligands and a water molecule (hydroxyl) completes the octahedral ligand sphere. Although the biological relevance of PA-LOX is still unknown its functional characteristics (lipoxin synthase activity) implicate this enzyme in a bacterial evasion strategy aimed at downregulating the hosts' immune system. << Less
Biochim. Biophys. Acta 1861:1681-1692(2016) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.